WATER RESEARCH 384/1 A Waggott E A Deal WRc Processes and I W Davies SAC Chromatography Ltd 606-S/2 April 1988 AN INVENTORY OF LINEAR TEMPERATURE PROGRAMMED GAS CHROMATOGRAPHIC RETENTION INDICES ON METHYL SILICONE PHASES Volume 1 2nd Edition This study was undertaken for and partially funded by the Department of the Environment The purpose of this work has been to provide the Water Industry with a cheap method of identifying unknown organic compounds in the aquatic environment. Pollution incidents frequently occur in which it is necessary to identify an organic compound accidentally or illegally discharged into the water catchment. Analytical instrumentation normally applied to the identification of organic compounds is relatively expensive and usually beyond the means of Water Utility Laboratories. A relatively cheap technique based on gas chromatographic retention times has been successfully developed. Gas chromatography is a separation technique the mechanism of which depends upon the differing affinities of the organic compounds in a mixture for the stationary phase of the gas chromatographic column. Thus different components of the mixture are retained on the column for different periods of time. If chromatographic separation conditions can be precisely standardised and the retention time of a component be measured with sufficient accuracy, the data may be used to give a precise identification of the component. This report contains new relevant retention data collected from the literature during the past year. It has been appended to Tables III and IV of the First Edition and in this version of the second edition the data is broken down into two volumes according to the type of stationary phase, methyl silicone or polyethylene glycol, and presented in full in Tables I and II. Water authorities and others are encouraged to generate further data on organic compounds of concern for incorporation into the data base. WRc will continue to generate new data on compounds of concern as and when the occasion demands as well as to collate suitable data from the literature. # CONTENTS | | Page | |---|------| | SUMMARY | | | INTRODUCTION | i | | COLUMN PREPARATION | i | | CHROMATOGRAPHY CONDITIONS | ii | | CALCULATION OF LINEAR TEMPERATURE PROGRAMMED RETENTION INDICES | iv | | RETENTION INDEX LISTINGS | vi | | REFERENCES | vii | | TABLE 1 SECOND TIER LIBRARY - TRUNCATED VERSION IN RETENTION INDEX ORDER | 1 | | TABLE 2 SECOND TIER LIBRARY - FULL VERSION IN ALPHABETICAL ORDER OF COMPOUND NAME | 70 | | BTB1.TOGRAPHY | 183 | #### INTRODUCTION There is a need in the water industry at local laboratory level for a cheap method of identification of organic compounds. The objective of this work has been to fulfill this need by developing a system by which unknown compounds found in water may be tentatively identified from their gas chromatographic linear temperature programmed retention indices (LTPRIs). Normally retention indices are calculated under isothermal conditions and related to the retention of members of a homologous series of n-alkane standards and quoted in terms of carbon number x 100. Environmental samples usually contain organic compounds with a wide range of boiling points which cannot be eluted from a gas chromatograph at one temperature. In this work therefore the equivalent carbon number or retention index was calculated using a linear temperature programmed gradient. In use, measured LTPRI values are compared with a central computer library containing data of relevant compounds, generated under 'ideal' conditions and identifications can be achieved without having to resort to the use of more expensive equipment eg mass spectrometry. conditions include the adoption of standard chromatography columns which are capable of producing results of the required precision and accuracy in extended use. #### COLUMN PREPARATION The standard, fused silica capillary columns were prepared by methods based on those developed by Grob et $al^{(1,2)}$ for the preparation of columns of borosilicate (eg Pyrex) tubing: some modification is necessary to adapt them to the different requirements of fused Columns have been prepared both from the silica. non-polar (polydimethylsiloxane) phase PS 255 and from the polar (polyethyleneglycol) phases Carbowax 20M and Superox 0.6. In all columns the liquid phase was immobilised by free radical polymerisation. column types have been thoroughly tested using the Grob test mix which contains acidic basic and neutral compounds and were shown to be inert and to display reproducible retention properties, the LTPRIs of Grob test compounds agreeing to within ± 1 unit. From these results it was concluded that the techniques used for the preparation of columns are successful and that it is possible to obtain consistent results from column to column and more importantly, from batch to batch. The standard columns have been employed to generate retention data on selected organic compounds of concern in connection with pollution of the aquatic environment. Commercially available columns of the chosen phases (polydimethylsiloxane and polyethylene glycol) have also been examined and all found to conform to the above mentioned requirements of reproducibility of retention properties. Results, at least for non-polar compounds, were consistent in terms of precision and accuracy in comparison with laboratory prepared columns. #### CHROMATOGRAPHY CONDITIONS The organic compounds were chromatographed on the polydimethylsiloxane phase using the following conditions: Chromatograph: Erba Science FV4160 Carrier gas: Hydrogen; head pressure set such that at ambient temperature (oven door open) the elution time for methane (column hold-up time) is 120 s. Injection: Split; injector vent flow rate > approx. 30 ml/min (split ratio approx 15:1), injector temperature 200°C. Detection: Flame ionisation; detector temperature 350°C; detector gas pressures: hydrogen 0.4 kg/cm, air 1.5 kg/cm. 30°C for injection then programmed Oven temperature immediately to 330°C at 4°C/min and held until no further n-alkanes eluted. Data processing: Peaks were acquired and retention times measured using a Hewlett Packard 3390A reporting integrator fitted with input/output board (option 100) and interfaced with a Digital Equipment Corporation VAX 11/780 computer which was used for both data storage and calculation of LTPRIs using a polynomial curve fitting technique. The conditions applied for gas chromatography on the polyethyleneglycol phases were modified as follows: Carrier gas: Hydrogen; head pressure set such that at 60°C the elution time for methane (column hold-up time) is 120 s. Injection: Split; injector vent flow rate approximately 30 ml/min (split ratio approx 15:1); injector temperature 200°C. Detection: Flame ionisation; detector temperature 250°C; detector gas pressures; hydrogen 0.4 kg/cm², air 1.5 kg/cm^2 . Oven temperature: 60°C for injection then programmed immediately to 220°C at 4°C and held for 20 min. Initially, to ensure that there was no possibility of incorrect identification of the peaks, solutions of each compound at approximately the same concentration (roughly 400 ug/ml for solids, 0.4 ul/ml for liquids) were chromatographed separately on each column type. Following these initial runs solutions of similar concentrations were prepared containing mixtures of compounds which would neither co-elute nor react with each other in solution (which meant essentially that acidic and alkaline compounds were kept separate). These solutions were chromatographed twice and average LTPRIs calculated from these results and those from the solutions of the individual compounds. In all cases 1.0 ul of pollutant solution was coinjected with 1.8 ul (corresponding to 1 ul plus the volume of the syringe needle) of a solution containing a mixture of n-alkanes (C6-26, C28, C30, C32, C36, C38 and C40) each at a concentration of approximately 40 ng/ul. The Kovats method of assigning retention indices calculates the logarithmetic retention of a solute interpolated between those of two standard compounds (3). The standard compounds can be comprised of any homologous series of organic compounds. The standards most commonly adopted are the n-alkane series. The logarithmic relationship which prevails under isothermal gas chromatographic operating conditions is replaced under linear temperature programmed elution by a near-linear relationship expressed by the equation of Van Den Dool and Kratz (4). $$I = 100z + 100 \quad \left[\frac{t_{Rx} - t_{Rz}}{t_{ez+1} - t_{Rz}}\right]$$ where I = linear temperature programmed retention index t_{Rx} = retention time of unknown t_{Rz} = retention time of the n-alkane eluting immediately before the unknown tRz+1 = number of carbon atoms in the n-alkane eluting immediately before the unknown However, it has been clearly demonstrated that the linear relationship between retention data for the n-alkane series does not strictly hold true especially at the low molecular weight end of the series (5). Thus other approaches to the fitting of a mathematical function to retention time data have been explored. These have included the application of polynomial fits and various cubic spline techniques (5,6,7,). The method employed in these studies for calculating linear programmed retention indices is a computerised polynomial routine which uses the Water Research Centre in-house computer - a DEC VAX 11/780. It utilises two Fortran sub-routines which are derived from the DEC VAX NAG library and which are not generally accessible. However the following text provides references which give the information on which the sub-routines are based. The method employed is due to Forsythe⁽⁸⁾ and is based upon the generation of a set of polynomials orthogonal with respect to summation over the normalised data set. The extensions due to Clenshaw⁽⁹⁾
to represent these polynomials as well as the approximating polynomials in their Chebyshev-series forms are incorporated. The modifications suggested by Reimsch and Gentleman⁽¹⁰⁾ to the method originally employed by Clenshaw for evaluating the orthogonal polynomials from the Chebysev-series representations are used to give greater numerical stability. The routine determines the least squares polynominal approximations of degrees 0, 1 K to the set of data points (X(R), Y(R)) with weights W(R) (R = 1,2,...M). The value of K + 1 when K is the maximum degree required is specified by the user. The approximation of degree I has the property that it minimises SIGMA(I), the sum of the squares of the weighted residuals EPS(R) (R = 1, 2, ...M), where $$EPS(R) = W(R) \times (Y(R) - F(R))$$ and F(R) is the value of the polynomial of degree I at the Rth data point. Each polynomial is represented in the Chebyshev-series form with normalised argument This argument lies in the range -1 to +1 and is related to the original variable X by the linear transformation $$X = (2 \times X - XMAX - XMIN)/(XMAX - XMIN).$$ Here XMAX and XMIN are respectively the largest and smallest values of X(R). The polynomial approximation of degree I is represented as where \mathbf{T}_{J} (X) is the Chebyshev polynomial of the first kind of degree J with argument (X). For each value of I (I = 0,1,...K) the routine produces the values of A (I + 1, J + 1) (J = 0,1 ...I), together with the value of the root mean square residual S (I + 1) defined by the square root of SIGMA (I)/(M - I - 1). In the case M = I + 1 the routine sets the value of S (I + 1) to zero. A further routine evaluates the polynomial: 0.5 x A (1) x $$T_0$$ (X) + A (0) X T_1 (X) + A (3) x T_2 (X) + ... + A (NPLUS 1) x T_N (X) for any value of X satisfying $-1 \le X \ge 1$. Here T_J (X) denotes the Chebyshev polynomial of the first kind of degree J with argument X. The value of NPLUS1 = N + 1 is prescribed by the user. While the mathematics of this system of calculation appears complex it is nevertheless simple in operation and provides reliable "best fit" data. Should suitable computer facilities and software not be available, readily acceptable results have been obtained using graphical techniques employing semi-log graph paper (6). # RETENTION INDICES LISTINGS The retention indices listings are organised in two tables containing both "pure" data generated under the prescribed conditions at WRc and data collated from the open literature under conditions which closely adhere to the standard. Table 1 gives a truncated version of the library organised in order of increasing retention index. Besides the compound name the only other relevent information provided is the stationary phase employed. Table 2 provides a similar listing but in alphabetical order of compound name and it also contains full information on column origin, stationary phase, column material, column type, column dimensions carrier gas, sample type and bibliographic reference. Computer based files of LTPRI and associated data have been set up for receiving, searching, and formatting information. Hard copy versions of the data base for more general distribution can be produced to order. ### REFERENCES - 1. GROB, K., GROB, G., BLUM, W. and WALTHER, W. J. Chromatogr., 1982, 244, 197-208 and references cited therein. - 2. GROB, K. Jr., GROB, G. and GROB, K. J. High Resolution Chromatogr. and Chromatogr. Commun., 1978, 1, 149-155 and references cited therein. - 3. KOVATS, E. Helv. Chim. Acta, 1958, 41, 1915. - 4. VAN DEN DOOL, H and KRATZ, P. D. J, Chromatogr,. 1963, 11 463. - 5. KNOPPEL, H., DE-BORTOLI, M., PEIL, A., SCHAUENBURG, H. and VISSERS, H. Analysis of Organic Micropollutants in Water. Proceedings of the Second European Symposium, Killarney (Ireland), Nov. 17-19, 1981, 133. - 6. RAMSEY, J.D. and LEE, T.D. J.Chromatogr., 1980, 184, 185. - 7. HALANG, W.A., LANGLAIS, R. and KUGLER, E. Anal. Chem., 1978, <u>50</u>, 1829. - 8. FORSYTHE, G.E. J. Siam, 1957, 5, 74. - 9. CLENSHAW, C.W. Computer J., 1960, 2, 170. - 10. GENTLEMAN, W.M. Computer J., 1969, 12, 160. ### TABLE 1 SECOND TIER LIBRARY OF LINEAR TEMPERATURE PROGRAMMED RETENTION INDICES TRUNCATED VERSION IN RETENTION INDEX ORDER | RETENTION
INDEX | | COMPOU | |--------------------|--|--------| | 0363 | ethanal | | | 0369 | ethanal | | | 0384 | | | | 0420 | methane, bromo | | | 0427 | | | | 0429 | ethane, chiolo
ethene, bromo | | | 0463 | đ | | | 0464 | trile : | | | 0465 | 2-methyl | | | 0466 | | | | 0469 | | | | 0469 | al (acrolein) | | | 04/1 | amine, 1-metnyipropyi (butane, 2-amino)
methanol | | | 0475 | probanone (acetone) | | | 0477 | ı, | | | 0480 | _ | | | 0480 | propanal | | | 0480 | | | | 0490 | 10 | | | 0492 | ۲ | | | 0493 | propanol, z-metnyı-z-
nronına 3-chloro | | | 0496 | diethyl ether | | | 0498 | furan | | | 0200 | acrylonitrile | | | 0200 | 2 | | | 0200 | | | | 0501 | amine, l,l-dimetnyletnyl | | | 0201 | | | | 0505 | inian, z-metnyi
sulphida dimethul (methulthiomethane) | | | 0507 | 2-methyl | | | 0509 | • | | | 6020 | | | | 0512 | | | | 0515 | υ | | | 0516 | propanol, 2- | | | 0518 | brome | | | 0518 | | | | 0520 | ethene, 1,1-dichloro | | | 0521 | • | | | 0522 | Ω | | | 0524 | methane, dichloro | | | 0.524 | 9 | | | 0526 | pentan-2,4-dione, 1,1,1,5,5,5-hexafluoro | | | 0526 | - 1 | | | 0527 | | | | 0527 | σ | | | 0528 | ethane, 1,1,1-trichloro-2,2,2-trilluoro | | | 0.000 | etnane, 1,1,2-trichloro-1,2,2-trilluoro | | PHASE PHASE PHASE SE-30 Me silicone Me silicone SE-30 We silicone SE-30 We lilicone SE-30 We lilicone SE-30 We lilicone SE-30 We silicone SE-30 Me silicone | STATIONARY PHASE | SE-30
SE-30
SE-30 | 0V-1 | Me silicone | OV-101 | Me Silicone
SE-30 | SE-30 | SE-30 | Me ailicone | SE-30 | SE-30 | SE-30
Me ailicone | 0V-101 | OV-101 | OV-101 | SE-30 | SE-30 | SE-30 | OV-101 | SE-30 | SE-30 | Me silicone | OV-1 | 00-101 | Me silicone | SE-30 | SE-30 | SE-30
OV-101 | SE-30 | SE-30 | SE-30 | Me silicone | SE-30 | 0V-101 | SE-30 | We silicone | 0V-1 | SE-30 | OV-101 | SE-30 | SE-30 | Me alticone | |--------------------|---------------------------------|---|----------------|----------------------|------------------------|---|-----------------------|----------------------------|----------------------|-----------------------------------|--------------------------|----------------------------|---------------------------------------|----------------------|--------------|----------------------|---------------------------------------|---------------|----------------------|--------------------|----------------------------------|----------------------|-------------------|--------------|---|------------------------------|-----------------|--|---------|-----------------|--------------------------|---------------------|-------------------|----------|---------------------|--|-------------------|--------|--------------------------|-------|---------------------------| NAME | COMPOUND NAME | acrylate) | thyl | | | thyl | | | er | Loro | T contract | | | | | | | er | | | | har 60tor | | (methyl | | 1 eater | | | allyl (1-propen-3-thiol) | | | | ı | copen-3-thiol) | | | | , |)-I- | | | propanol, 1-
propen-1-ol, 2- | propen-1-o1, 2.
butane, 2,2-dimethyl | methane, nitro | butane, 2,2-dimethyl | propane, 2-chloro-2-me | butane, Z,Z-dimethyl
cuclomentadiene: 1.3- | propanol, 2-methyl-2- | ether, chloromethyl methyl | propyne, 3-chloro-1- | propyn~1-o1, 2-
proprionitrile | acetic acid, vinyl ester | ethene, trans-1,2-dichloro | amine, bucyi (bucane,
cvclopentane | butane, 2,3-dimethyl | cyclopentene | pentene, 3-methyl-1- | propanci, i-
ether, methvl-t-butvl | ane, 2-methyl | butane, 2,3-dimethyl | ic acid, vinyl est | cyclopentene
propane: 2-bromo | butane, 2,3-dimethyl | ane, 2,3-dimethyl | cyclopentane | chloroformic actu, med
pentane. 2-methyl | propenoic acid, methyl ester | cyclopentane | pentane, z-metnyi
formic acid. 2-propenyl ester | butanal | hexadiene, 1,5- | mercaptan, allyl (1-p) | buteme, J-cmio.c.i. | pentane, 3-methyl | butanone | mercaptan, n-propyl | propens, crafications :
mercaptan, allv1 (1-propen-3-thiol) | pentane, 3-methyl | | butanol, 2-
hovere 1- | 1 | propene, trans-1-bromo-1- | | RETENTION
INDEX | II
II | | 0536 meth | | | 0540 buta | | | 0545 prop | | | | 0557 cvcl | | | | 0561 prop | | | | 0565 eyer | | | | | 0569 prop | | 05/0 pent | | | 0575 merc | | | | 0580 merc | | | | | | | RETENTION INDEX | acetic acid, ethyl ester | | opyl ether | butene, cis-Z-chioro-Z- | methane, titunioro
mercantan, n-bropol | dioxolane, 1,3- | ıd, | | ethane, lodo | | | יגי | | , 2-methyl-2 | acid, ethyl | propane, 1-chloro-2-metny1 | tri | | tric | cid, ethyl | 1, 2 | O) | \rightarrow | entene, 3-met | acetic acid, ethyl ester | s-aimecnyı-ı,
dro | methane, trichloro | . ~ | | , 2,2-dimethyl | propane, Z-bromo-Z-metnyl | , e | m | -chlo | trans-1-chl | ntan | 0 | etrahydro | 5 | φ. | etrah | ,, | pentane, Z,Z-dimetnyi | cyclopencane, methyl | ٠,- | ne, chloro-2- | | |--------------------------|------|------------|-------------------------|---|-----------------|------|------|--------------|------|------|------|------|--------------|-------------|----------------------------|------|------|------
------------|------|----|---------------|---------------|--------------------------|----------------------|--------------------|------|------|----------------|---------------------------|------|------|-------|-------------|------|--------|-----------|------|------|--------|----|-----------------------|----------------------|------|---------------|--------| | 0593 | 0594 | 0594 | ഗ | 0595 | 0597 | 0090 | 0090 | 0601 | 0601 | 0601 | 0603 | 0604 | 9090 | 0607 | 0000 | 6090 | 6090 | 0610 | 0611 | 0614 | _ | 0615 | 0615 | 0616 | 0616 | 0616 | 0616 | 0617 | 0618 | 0618 | 6190 | 0620 | 0620 | 0622 | 0622 | \sim | \sim | 0625 | 0625 | \sim | N | 0626 | 1290 | 0627 | 0627 | !
• | Page OV-1 OV-101 Me silicone SP-2100 Me silicone Me silicone SE-30 OV-1 SE-30 OV-101 SE-30 Me silicone SE-30 Me silicone OV-1 OV-1 SP-2100 00-1 OV1-1/SE-54 SE-30 Me silicone SE-30 OV-101 SE-30 SP-2100 SE-30 0V-1 0V-1 0V-1 SP-2100 SE-30 OV1-1/SE-54 OV-101 SE-30 SP-2100 SP-2100 SE-30 0V-1 OV-101 SE-30 COMPOUND NAME RETENTION INDEX STATIONARY PHASE SE-30 OV-101 OV-101 OV-101 RETENTION INDEX STATIONARY PHASE Me silicone OV-101 SE-30 OV-1 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 OV-1 OV-1 OV-1 OV-1 SE-30 SE-30 OV-1 SE-30 OV-1 SP-2100 OV-101 Me silicone SE-30 OV-101 OV-101 OV-101 OV-101 OV-101 OV-101 OV-101 OV-101 SE-30 RETENTION INDEX STATIONARY PHASE SP-2100 SE-30 OV-101 OV-101 00-1 0V-1 Me silicone 0V-1 0V-1 SE-30 0V-101 SE-30 SE-30 OV-101 SE-30 OV-1 SE-30 SE-30 SE-30 OV-1 Me silicone SP-2100 SE-30 SE-30 OV-1 OV-1 SE-30 OV-101 SE-30 OV-101 SE-30 SE-30 Me silicone OV-1 Me silicone SE-30 OV-1 OV-1 OV-101 SE-30 SE-30 SP-2100 00-1 Me silicone OV-101 ``` oyclomeans oyclomeans, 1,1-dimethyl hexans, 3-methyl pentadions, 2,3- heptadiens, 1,6- hexans, 3-methyl nitropropans, 2- propenoic acid, ethyl ester (ethyl acrylate) ethens, trichloro propenoic acid, 2-methyl, methyl ester (methyl methacrylate) methans, bromodichloro Janercaptan, s-butyl sulphide, diethyl (3-thiapentane) pentane, 3-ethyl pentanol, 2- sulphide, diethyl (3-thiapentane) cyclopentane, cis-1,3-dimethyl propene, 2,3-dichloro sulphide, diethyl (3-thiapentane) dioxane, 1,4- acetic acid, 2-propynyl ester methane, tetrachloro sulphide, methylallyl acetic acid, 2-propenyl ester pentane, 2,3-dimethyl pentane, 2,3-dimethyl hexadiene, cis, trans-2,4-methane, tetrachloro acetonitrile, trichloro cyclohexadiene, 1,3- pentane, 3,3-dimethyl pentanone, 2- propane, 1,2-dichloro propane, 1,2-dichloro propane, 1,2-dichloro methane, tetrachloro ethene, trichloro methane, dibromo cyclohexene ethene, trichloro hexane, 2-methyl hexane, 3-methyl butane, 2-bromo pentanone, 2- pentanol, 2- cyclohexene cyclohexane cyclohexene cyclohexane cyclohexane pentanal benzene benzene 0667 0668 0669 0669 0669 0670 0667 0671 1190 ``` OV-1 Me silicone OV-1 OV-1 OV-1 OV-1 OV-101 OV-101 SE-30 SE-30 ov-101 OV-1 0V-1 00-1 OV-101 0V-1 0V-1 0V-1 Me silicone SE-30 OV-101 SE-30 Me silicone SE-30 OV-101 ov-1 OV-101 SE-30 STATIONARY PHASE COMPOUND NAME RETENTION INDEX ethene, trichloro pentane, 2,2,4-trimethyl acetic acid, dimethylethyl ester cyclopentane, trans-1,3-dimethyl ethene, trichloro 0687 0687 0689 0689 0687 cýclopentane, trans-1,2-dimethy1 methane, bromodichloro heptene, 1cyclohexene acetonitrile, dichloro dioxane, 1,4mercaptan, n-butyl propionate, ethyl Me silicone Me silicone SE-30 OV-101 SE-30 OV1-1/SE-54 OV1-1/SE-54 page amine, methylpentyl butane, 1-chloro-3-methyl ethane, 1,2-diflüoro-1,1,2,2-tetrachloro ethane, 1-bromo-2-chloro ethane, 1-bromo-2-chloro ethane, 1-bromo-2-chloro methane, bromodichloro acetone, 1,1-dichloro 0704 0704 0704 acetic acid, propyl ester pentadiene, 2,4-dimethyl-1,3-propanoic acid, ethyl ester butane, 2-chloro propane, 1-iodo heptane, n-methane, dibromo methane, dibromo sulphide, methylpropyl butan-2-one, 3,3-dimethyl ethene, trichloro pyrazine dioxane, 1,3-mercaptan, n-butyl methane, bromodichloro 06699 06699 06699 066992 066993 066993 066993 06696 06 propane, 2-iodo-2-methyl acetaldehyde, trichloro epichlorhydrin Me silicone SE-30 Me silicone OV-1 OV-1 SP-2100 Me silicone OV-101 Me silicone SE-30 SE-30 RETENTION SE-30 Me silicone OV-1 OV-101 OV-1 OV-1 SP-2100 OV-101 OV-101 SE-30 OV-101 SE-30 OV-101 SE-30 Me silicone OV-101 OV-101 OV-101 SP-2100 OV-1 OV-1 OV-1 SE-30 Me silicone SE-30 OV-101 SE-30 Me silicone OV-101 SE-30 OV-101 OV-101 OV-101 SE-30 Me silicone SE-30 0V-1 Me silicone 0V-1 0V-1 0V-1 SP-2100 0V-101 STATIONARY PHASE SE-30 OV-101 RETENTION INDEX Me silicone OV-101 OV-101 SE-30 ov-101 SE-30 SE-30 OV-1 SE-30 SP-2100 Me silicone OV-101 STATIONARY PHASE Me silicone OV-1 SE-30 SE-30 SE-30 0V-101 0V-101 0V-1 0V-1 OV-101 Me silicone SE-30 SE-30 0V-1 SP-2100 OV-1 OV-1 SE-30 OV-101 SE-30 SE-30 Me silicone SE-30 OV-101 SP-2100 OV-1 OV-1 SP-2100 OV-101 OV-1 OV-101 Me silicone OV-101 OV-101 OV-101 SE-30 SP-2100 OV-101 SE-30 | 덛Ⅱ | | | | |--------------------|--
--|---| | COMPOUND NAME | | adrylate) | | | 9 H | | (ethyl methacrylate) | | | | | l ester | ropicrin)
thyl | | | chloro 2- (toluene) (toluene) (toluene) (toluene) (toluene) hloro hyl omo 2-methyl | -methyl, ethyl (toluene) lloro lloro lloro lloro lloro yl mochloro (toluene) tthyl hloro lloro (toluene) | hexanone, 3- hexanone, 3- methanoe, trichloronitro (chloropicrin) cyclopentane, 1,1,2-trimethy1 heptane, 4-methy1 heptane, 3-ethy1- cyclopentane, 1,1,3,3-tetramethy1 thiophene, 3-methy1 thiophene, 3-methy1 thiophene, 3-dimethy1 benzene, methy1, (toluene) cyclopentene, 1,2-dimethy1- hexane, 3-ethy1-3-methy1 acetonitrile, bromochloro acetic acid, isobuty1 ester dioxolane, 2-ethy1-4-methy1 dioxolane, 2-ethy1-4-methy1 heptane, 2-ethy1-4-methy1 heptane, 2-ethy1-4-methy1 heptane, 2-methy1 heptane, 2-methy1 heptane, 2-2,4,4-tetramethy1 henzene, methy1, (toluene) henzene, methy1, (toluene) | | | l,2-tri
bromo-
sthyl,
sthyl,
comotri
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl,
sthyl, | 10 .55550 . 5805 . 5% | hexanone, 3- methane, trichloronitro (chl. cyclopentane, 1,1,2-trimethy heptane, 4-methyl. heptane, 3-ethyl-2-methyl cyclopentane, 1,1,3,3-tetram thiophene, 3-methyl. cyclopentene, 1,2,3,1-tetram thiophene, 3-methyl. cyclopentene, 1,2-dimethyl hexane, 3,4-dimethyl pentane, 3-ethyl-3-methyl pentane, 3-ethyl-3-methyl dioxolane, 2-ethyl-4-methyl dioxolane, 2-ethyl-4-methyl dioxolane, 2-ethyl-4-methyl heptane, 2-methyl methane, 2-methyl methane, 2-methyl methane, 2-methyl heptane, 2-methyl methane, 2-methyl methane, 2-methyl heptane, 2-methyl heptane, 2-methyl heptane, 2-methyl heptane, 2,4,4-tetramethyl hencene | | | | elneme, crains to propenoic acid, benzene, methyll propane, 1,3-dic propane, 1,3-dic propane, 1,3-dic propane, 1,3-dic propane, 1,3-dic percent in the propane, methyl butyric acid, 2-cyclohexene, 1-ropropane, 1,3-dic percene, 1,3-dic percene, 2-methyl hexane, 2-meth) hexane, 2-meth) hexanene, 3-hexanene, 3-hexanene, 3-hexanene, 3-hexanene, 3-hexanene, 3-dimenial propenoie, 3-hexanene, 2-dimenial propenoie, 3-hexanene, 3-hexanene, 3-dimenial propenoie, 3-dimenial propenoie, 3-hexanene, 3-dimenial propenoie, prope | hexanone, 3- methane, trich cyclopentane, heptane, 4-met methane, 3-mt pentane, 3-mt thiophene, 3-mt cyclopentane, thiophene, 3-mt cyclopentane, hexane, 3-et hexane, 3-et acetonitrile acetic acid, dioxolane, 2-e dioxolane, 2-e dioxolane, 2-e dioxolane, 2-e heptane, 2-met methane, 2-met methane, 2-met methane, 2-met methane, 2-met methane, 2-met | | RETENTION
INDEX | | 0756
0757
0757
0757
0758
0758
0758
0758
0761
0761 | | page 11 | | | | D :: | ie, 3,4-dichloro-1- | 3-me
2-br | ্ব । | ne, 3,4-dimethyl | acid, 2-propenyl | liene, | | 1-methyl | cyclopentane, cis-l-trans-2,4-trimetny1 | 1a.1 | • | ne, 2,2,4,4-retrametny.
ne. 3-methvl | ne, 3-ethyl | cyclohexane, cis-1,3-dimethyl | methane, dibiomochioro | hexane, 1,1-dimethyl | 3, tran | aptan, allyl (1-propen-3-thlo1)
ang dichlorolodo | lamine, 2-hydroxy (ethanolamine) | butyric acid, ethyl ester | ne, 2,2,5-trimethyl | anoic acid (propronic acid)
cheptene | ohexane, trans-1,3-dimethyl | nide, ethylpropyl | pta
1. | 2,2 | 1,2-d | cycloheptatriene, 1,3,5"
cycloheysne trans-1 4-dimethvl | 2,2,5 | dio, | I | ric acid, ethyl ester | ٦., | oheptene | ne, tetrachloro | | |--------------------|-----------------------|----------------------|-----------------------|---------------------|----------------------|--------------|------------------|------------------|--------------|--------------|--------------|---|---------|---------|---|-------------|-------------------------------|------------------------|----------------------|--------------|---|----------------------------------|---------------------------|---------------------|---|-----------------------------|-------------------|---------------------|------|---------|--|---------|------|------|-----------------------|-------------|------------------------|-----------------|------| | | heptane,
hexanone, | methane,
methane, | methane,
acetonitu | butene, | heptane,
pentane, | cyclohexane, | hexane, | • | cyclohexadie | cyclohexene, | cyclohexene, | cyclopent | hexanal | hexanal | pentane, | hexane, | cyclohex | methane, | cyclohexane, |
cyclohexane, | mercaptan, | ethylami | butyric | hexane, | propanole ac | cyclohexane, | sulphide, | cyclonep
ethane. | | butane, | cycloheptatr | hexane, | • | | butyric | sulphoxide, | \mathbf{Q}_{\bullet} | ethene, | | | RETENTION
INDEX | | | 0768
0769 | | 0769 | 0770 | 0770 | 0770 | 0771 | - [| 7 | 0773 | 0773 | 7 | 0773 | 0775 | 0776 | 07.76 | 0778 | 0778 | 0778 | | | 0781 | | 0783 | 0783 | 0784 | 0784 | 0785 | 0785 | 0786 | 0786 | 0786 | 0787 | 0787 | 0788 | 0789 | 0789 | というのでは、一般の対象の対象を表現している。 いっこう いっこう はんかん はんしょう はんない 変数の COMPOUND NAME | COMPOUND NAME | | ester (Sarin) | | | | |--------------------|---|--|--|---|--| | | hexane, 2,2,4-trimethyl octene, 1- octene, 1- piperidine acetic acid, butyl ester cyclohexane, trans-1,2-dimethyl | cyclopentanol phosphoritoridic acid, methyl-, 1-methylethyl phosphoritoridic acid, methyl-, 1-methylethyl acetic acid, 1,1-dimethylpropyl ester ethylene, trans-1,2-di-t-butyl acetone, 1,1-dichloro acetone, 1,1-dichloro acetone, 1,1-dichloro hexane, 2-chloro hexane, 2-chloro mercaptan, pentyl mercaptan, pentyl mercaptan, dichloroiodo mercaptan, dichloroiodo | mstuding, uncorrored by the state of sta | Pyrazine, 2-methyl pyrazine, 2-methyl acetic acid, butyl ester butane, 1-iodo ethane, 1,2-dibromo lactic acid, ethyl ester lactic acid, ethyl ester cyclohexane, cis-1,3-dimethyl ethane, 1,2-dibromo pyrazine, 2-methyl mercaptan, pentyl mercaptan, pentyl valeric acid, methyl ester valeric acid, bromomethyl ester | butane, 1,3-dichloro cyclohexane, cis-1,4-dimethyl morpholine acetic acid, 1,2-dimethylpropyl ester cycloheptadiene, 1,3-ct-1-yne butene, cis-1,3-dichloro-2-furfuradehyde butane, 1-iodo ethene, tetrachloro ethene, tetrachloro hexen-1-ol, trans-3- | | RETENTION
INDEX | 0789
0789
0790
0790
0792
0792 | 0792
0793
0793
0794
0795
0795
0795 | 0.195
0.797
0.797
0.798
0.799
0.800
0.800
0.800 | 0801
0802
0803
0803
0804
0806
0806
0806 | 0809
0810
0810
0811
0811
0812
0812
0814 | STATIONARY PHASE PHASE OV-1 SP-2100 OV-1 SE-30 Me silicone OV-1 SP-2100 OV-1 SE-30 OV-101 OV-101 OV-101 OV-101 SE-30 Me silicone OV-101 SE-30 SE-30 Me silicone SE-30 SE-30 SE-30 OV-1 OV-101 0V-1 OV-101 SE-30 SE-30 Me silicone OV-1 Me silicone OV-101 ov-1OV-1 Me silicone OV-101 SE-30 Me silicone OV-101 OV-101 OV-101 Me silicone Me silicone OV-101 OV-101 SE-30 SP-2100 OV-1 SE-30 | COMPOUND NAME | | | alcohol)
ester (propyl methacrylate) | |--------------------|--|--|--| | | 4-vinyl-1- romo a (3-methylpyridine) como-3-chloro dibromo 1. no a cid, methylethyl ester cis, trans, trans-1, 2, 4-trimethyl bromo 1. chloroethyl ethyl 1. dimethyl, (m-xylene) dimethyl, (m-xylene) dimethyl, (m-xylene) dimethyl, (m-xylene) | discis, cis, trans-1,3,5-trimethy1 dibromo dimethy1, (p-xylene) dimethy1, (p-xylene) dimethy1, (p-xylene) dimethy1, (p-xylene) dimethy1, (m-xylene) dimethy1, (m-xylene) synono 1,2,3-trichloro 1,2,3-trichloro 3-methy1buty1 ester 3-methy1buty1 ester dimethy1, (p-xylene) 1,2-propenyl ester dimethy1, (m-xylene) dimethy1, (p-xylene) dimethy1, (p-xylene) dimethy1, (p-xylene) | (furfuryl alcohol) 1, propyl ester (propyl (m-xylene) (m-xylene) (p-xylene) (p-xylene) (p-xylene) | | | cyclohexene, 4-vinyl-1- methane, tribromo picoline, beta (3-methylpyridine) propane, 1-bromo-3-chloro propane, 1,2-dibromo benzene, ethyl benzene, chloro hexane, 1-chloro cyclohexane, cis, trans, trans-1,2,cyclohexane, bromo benzene, ethyl ether, 1,2-dichloroethyl ethyl benzene, ethyl benzene, ethyl benzene, 1,3-dimethyl, (m-xylene) | ane of part | 1-
tribromo
tribromo
tribromo
tribromo
-hydroxymethyl
c acid, 2-methyl
1,3-dimethyl,
1,3-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl,
1,4-dimethyl, | |
RETENTION
INDEX | 0840
0841
0841
0841
0841
0842
0843
0844
0844
0844
0844
0844
0844
0846
0846 | | | | STATIONARY
PHASE | OV-101
OV-1
OV-1
Me silicone
SE-30
OV-101
OV-101
SE-30
SE-30
SE-30
SE-30
SE-30 | SE-30
OV-101
OV-101
SE-30
OV-101
OV-101
OV-101
SE-30
OV-1
SP-2100
OV-1
SP-2100
OV-1
SP-2100
SP-2100
SP-2100
SP-2100
SP-30 | SE-30 Me silicone OV-10 SE-30 Me silicone OV-101 SP-2100 OV-101 OV-101 SE-30 SE-30 SE-30 OV-101 OV-101 OV-101 OV-101 OV-101 OV-101 OV-101 OV-1 OV-1 OV-1 OV-1 OV-1 OV-1 OV-1 SE-30 OV-1 SE-30 OV-1 OV-1 OV-1 OV-1 OV-1 OV-1 OV-1 OV-1 | |---------------------|---|--|--| | | | | | | ME
== | | ter (aldicarb) | | | COMPOUND NAME | | ester (isopropyl crotonate) lene) lene) lene) lene) lene) ethylthio)propylidene amino ester (aldicarb) ,2,3-trimethyl | lene) 1 ester lene) lene) lene) lene) lene) lene) | | | omo (lthio) cenyl ester omo chloro sthyl-2,4- | | kthyimethyl kromo kromo chimethyl, (p-xy dimethyl, (p-xy lbenzene) cis, trans, cis-l thylmethyl khyl acid, 2-propeny ethylidene hloro chart, (o-xy dimethyl, (| | RETENTION
INDEX | | | | Me silicone 00-1 OV-1 SP-2100 OV-1 OV-1 OV-101 SE-30 PHASE Me silicone OV-1 SP-2100 OV-1 SE-30 SE-30 SE-30 SE-30 SP-2100 0V-1 0V-1 0V-101 0V-101 0V-101 OV-101 SE-30 Me silicone Me silicone SP-2100 SP-2100 OV-1 SP-2100 OV-1 OV-1 SE-30 SE-30 SE-30 SE-30 Me silicone SE-30 SE-30 SE-30 SE-30 OV-101 SE-30 Me silicone OV-101 SE-30 OV-101 OV-1 ``` propencic acid, butyl ester (butyl acrylate) propencic acid, butyl ester (butyl acrylate) benzene, 1,2-dimethyl, (o-xylene) benzene, 1,2-dimethyl, (o-xylene) benzene, 1,2-dimethyl, (o-xylene) pyrazine, 2,5-dimethyl pyrazine, 2,6-dimethyl pyrazine, 2,6-dimethyl pyrazine, 3,6-dimethyl pyridine, 3-chloro sulphide, dipropyl chloroacetic acid, dimethylethyl ester sulphide, dipropyl valeric acid, ethyl ester benzene, 1,2-dimethyl, (o-xylene) chloroacetic acid, 2-propynyl ester benzene, 1,2-dimethyl, (o-xylene) propane, 2,2-dimethyl-1,3-dichloro styrene, (vinylbenzene) cyclohexane, cis-1-ethyl-3-methyl benzene, 1,2-dimethyl, (o-xylene) ethane, 1,1,2,2-tetrachloro pentane, 1-bromo-4-methyl ethane, 1,1,2,2-tetrachloro pentane, 2-bromo-2,4-dimethyl propane, 1,2,3-trichloro propane, 1,2,3-trichloro styrene, (vinylbenzene) cyclohexen-1-ol, 2- ethane, 11,2,2-tetrachloro ethane, 1,1,2,2-tetrachloro ethane, 1,1,2,2-tetrachloro cyclooctatetraene, 1,3,5,7- methane, bromochloroiodo methane, bromochloroiodo methane, bromochloroiodo ethene, bromotrichloro methane, bromochloroiodo styrene, (vinylbenzeñe) styrene, (vinylbenzene) pyridine, 2,6-dimethyl cyclohexane, chloro cyclohexane, chloro pyrazine, 2-methoxy pyrazine, 2-methoxy cyclohexanone acrylonitrile cyclohexanol nonene, 1- nonene, 1- nonene, 1- nonene, 1- heptanal heptanal heptanal INDEX 0876 0876 0876 0876 0876 0876 0876 08776 08777 08877 08887 08886 ``` RETENTION COMPOUND NAME SE-30 Me silicone Me silicone OV-101 OV-1 SP-2100 Me silicone SE-30 Me silicone OV-101 SP-2100 SE-30 Me silicone SE-30 OV-101 OV-101 Me silicone OV-101 OV-101 Me silicone SE-30 Me silicone SE-30 Me silicone STATIONARY SE-30 SP-2100 SE-30 OV-101 OV-101 OV-101 OV-101 SE-30 0V-1 0V-1 SE-30 OV-1 SP-2100 OV-1 SE-30 OV-1 OV-101 OV-10 | COMPOUND NAME | | | D | (Z-metnyipropyi metnacryiate) |--------------------|---|------|-----------------------|----------------------|----------------------------|--------------------|----------------------|----------------------|-------------|------------------------------|-----------------------------------|-----------------------|-----------------------|------------------------|------------------------|------|------------------------|------|------------------------|--|-------------------|--------------------|------|-----------------|------------------------------------|--------------|------|----------------|------|------|---------------|-------------------|--------------------------------|------|------------------|----------------------|-------------------|------|----------------------|------|------|-----------------|------|-------------------| | | <pre>butane, meso-2,2-dichloro butanoic acid, 3-methyl, 2-propenyl ester cvclohexane, isopropyl</pre> | 1 | ter (propyrthyl ester | octane, 2,2-dimethyl | propane, 1,1,2-tetrachloro | cyclohexane, allyl | propane, 1,3-dibromo | cyclohexen-1-one, 2- | cyclooctane | benzene, isopropyl, (cumene) | cyclohexane, cis-1-ethyl-2-methyl | cyclohexane, n-propyl | cyclohexane, n-propy1 | octene, 3,7-dimethy1-2 | octene, 3,7-dimethyl-3 | ~ | heptanone, 5-methyl-3- | • | pyridine, 2,4-dimethyi | cyclonexylamine, J-mechyr
cyclonfadiene, 1.5- | cycloccactor, 1/5 | pinene, (+)-gamma- | ò | -bromo-2-methyl | id, 2-methyl, 2-methylpropyl ester | benzaldehyde | ج. | benzene, allyl | ١. | _ | xane, n-propy | toluene, 2-chloro | cycloctane
hexanal, 2-ethvl | | hexanal, 2-ethýl | octane, 2,6-dimethyl | toluene, 3-chloro | | octane, z,o-dimetny. | | | benzene, propyl | ā | toluene, 4-chloro | | RETENTION
INDEX | 0915
0915
0915 | 0916 | 091 <i>7</i>
0918 | 0918 | 0918 | 0919 | 0919 | 0920 | 0920 | 0921 | 0921 | 0921 | 0921 | 0922 | 0922 | 0923 | 0923 | 0923 | 0924 | 0350 | 0926 | 0926 | 0926 | 0927 | 0928 | 0929 | 0929 | 0.000 | 0830 | 0630 | 0931 | 0931 | 0932 | 0932 | 0932 | 0932 | 0932 | 0934 | 0934 | 9860 | 0936 | 9860 | 0936 | 0936 | cyclohexanone, "methyl heptane, 4-propyl benzene, 1-ethyl-3-methyl benzene, 1-ethyl-3-methyl benzene, 1-ethyl-3-methyl dichloroacetic acid, 2-propenyl ester heptane, 3-ethyl-2-methyl benzaldehyde bromoacetic acid, dimethylethyl ester cyclooctadiene, 1,5- pyrazine, 2-isopropyl benzaldehyde oxalic acid, diethyl ester trisulphide, dimethyl trisulphide, dimethyl benzene, 1-ethyl-3-methyl cyclohexanol,3-methyl benzene, 1-ethyl-3-methyl benzene, 1-ethyl-4-methyl heptanol, 1- chloroacetic acid, 1-methylpropyl ester amine, di--butyl bromeacetic acid, 2-propenyl ester benzene, 1-ethyl-4-methyl benzene, 1-ethyl-4-methyl benzene, 1-ethyl-4-methyl benzene, propyl benzene, propyl benzene, propyl benzene, 1-ethyl-3-methyl benzene, 1-ethyl-3-methyl benzene, 1-ethyl-3-methyl 0941 0943 0943 0944 0944 benzene, propyl cyclohexadiene, 1-methoxy-1,4-heptane, 3-ethyl-3-methyl indene, octahydro benzene, propyl hexane, 3,4-diethyl amine, tri-n-propyl > 0937 0937 INDEX 0937 indene, octahydro pyridine, 2,3-dimethyl indene, octahydro 0938 0939 0940 0940 0940 0940 OV-101 Me silicone SE-30 OV-101 SP-2100 OV-1 SE-30 OV-101 SE-30 OV-1 SE-30 OV-1 OV-1 SP-2100 SE-30 OV-101 SE-30 SE-30 SE-30 SE-30 SE-30 OV-101 SE-30 SE-30 SE-30 SE-30 Me silicone OV-101 SP-2100 SE-30 SP-2100 00-1 00-1 > benzene, 1,3,5-trimethy1 benzene, 1-ethy1-3-methy1 benzene, 1-ethy1-4-methy1 benzene, 1,3,5-trimethyl pyrazine, 2-chloro-3-methyl benzene, 1,3,5-trimethyl benzene, 1,3,5-trimethyl benzene, 1,3,5-trimethyl furoic acid, methyl ester heptane, 1-chloro benzene, propyl ethane, pentachloro ethane, pentachloro ethane, pentachloro COMPOUND NAME STATIONARY OV-101 OV-101 SP-2100 OV-1 OV-101 0V-1 SE-30 SE-30 | COMPOUND NAME | ne.)
ne.) | rylate) |
--|--|---| | OOMP | yl ketone)
yl ketone)
yl ketone) | (butyl methacrylate) | | | (di-t-butyl
(di-t-butyl
(di-t-butyl)
ster | r
r (buty) | | | <u></u> | pynyl ester butyl ester bro | | hyl
chyl
chyl
chyl
chyl
sthyl
3-methyl | hydrindane, trans- (hexahydroindane) nonane, 4-methyl pentanone, 2,2,4,4-tetramethyl-3-, (di- pentanone, 2,2,4,4-tetramethyl-3-, (di- pentanone, 2,2,4,4-tetramethyl-3-, (di- pyridine, 4-cyano benzene, propyl chloroacetic acid, 2-methylpropyl ester ether, 2,2'-dichlorodiethyl bromoacetic acid, 2-propynyl ester cyanoacetic acid, ethyl ester benzene, 1,3,5-trimethyl pyrazine, 2-ethoxy porazine, 2-ethoxy pyrazine, 2-ethoxy porazine, 3-ethoxy porazine | enylhylhylhylhylhylhylhylhylhylhylhylhylhy | | benzene, 1,3,5-trimethyl benzene, 1,3,5-trimethyl benzene, 1,3,5-trimethyl heptanol, 1-3,5-trimethyl octane, 2,3-dimethyl benzene, 1,3,5-trimethyl benzene, 1-sthyl-4-methyl pyrazine, 2-methoxy-3-methyl pyrazine, 2-methoxy-3-methyl pyrazine, 2-methoxy-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | hydrindane, trans- (hexahyd nonane, 4-methyl pentanone, 2,2,4,4-tetramet pentanone, 2,2,4,4-tetramet pentanone, 2,2,4,4-tetramet pentanone, 2,2,4,4-tetramet pyrtdine, 4-cyano benzene, propyl chloroacetic acid, 2-methyl ether, 2,2'-dichlorodiethyl benzene, 1,3,5-trimethyl phenol pyrazine, 2-ethoxy pyrazine, 2-ethoxy pyrazine, 2-ethoxy pyrazine, 2-ethoxy pyrazine, 2-ethoxy dinethyl cyanoacetic acid, ethyl est dichloroacetic acid, ethyl est dichloroacetic acid, ethyl est chrosone, 1,3,5-trimethyl cyanoacetic acid, ethyl est dichloroacetic acid, ethyl est dichloroacetic acid, dimethyl cyanoacetic acid, ethyl est dichloroacetic acid, dimeth | b-methy1 c acid, 2-propeny hyde l-ethyl-2-methyl l-ethyl-2-methyl l-ethyl-2-methyl l-ethyl-2-methyl tribromo acetic acid, 2-pr acetic acid, 2-pr c acid, 2-methyl, l-ethyl-2-methyl, l-ethyl-2-methyl, l-ethyl-2-methyl, l-ethyl-2-methyl, l-ethyl-2-methyl alpha-methyl alpha-methyl l-ethyl-2-methyl l-ethyl pentachloro 2-chloro (-)-beta- cid, 2-furfuryl e cid, 2-furfuryl e cid, 2-furfuryl e cid, 2-furfuryl e | | | hydrindane, trans-
nonane, 4-methyl
pentanone, 2,2,4,4-
Pentanone, 2,2,4,4-
Peritanone, 2,2,4,4-
phridine, 4-cyano
benzene, propyl
chloroacetic acid,
ether, 2,2'-dichlon
bromoacetic acid,
cyanoacetic acid,
benzene, 1,3,5-trin
phenol
pyrazine, 2-ethoxy
pyrazine, 2-ethoxy
pyrazine, 2-ethoxy
cyanoacetic acid,
dichloroacetic acid,
edichloroacetic acid,
cyanoacetic acid,
dichloroacetic acid, | | | | hydrindane, nonane, 4-n pentanone, pentanone, pentanone, pentanone, pyridine, denzene, preher, 2,2' bromoacetic cyanoacetic cyanoacetic phenol phenol pyrazine, pyrazine, cyanoacetic cyan | nonane, control pentanoic benzanoic benzene, benzene, benzene, benzene, cotane, dichlorophepten-2 phenol propenoi benzene, propane, gtyrene, nonane, styrene, pinenol, styrene, pinenol, pinenol, pinenol, pinenol, acetic acetic acetic acetic acetic acetic acetic | | NETENTION
1NDEX
0953
0953
0953
0954
0954
0954
0954 | 0 0 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0990
0990
0990
0990
0990
0990
0990
099 | | COMPOUND NAME |--------------------|-----------------|------------------|------|---|--------------------|------|-------------|---------------------|--------------------------------|------|------|-----------------------|----------|----------------------------------|------|----------------|----------------------|-----------------|------|-----------------|------|--------------------------|--|-----------------|----------------------|-----------------|-----------------|-----------|-----------|------------------|--|------|------------------|------------------|-----------------|-------------|---------|------|-----------------|--------------|-------------|--------------|-------------|--------------------------------------|-----------------|----------|--------------------------|---------| | | | | | į. | Ţ | | | • | opropyl | | | | | | | | | | | | | | (d | ì | | | | | | | (pentyl acrylate) | | | | | | | | | | | | | | | | l ester | | | | | l-ethyl-2-methyl | | 1d, C13-3-hexenyl ester
tic anid 3-butenul ester | omo | omo | 2-isopropyl | 2-methyoxy-5-methyl | ne, trans-1-methyl-4-1sopropyl | Ę. | • | , 3, 4, 4-tetramethyl | IImetny1 | de, dimecnyi
1-methul-3-vinul | romo | 1-2,4-dimethyl | 3-ethyl-2,4-dimethyl | 1-2,4-dimethyl | | 1,2,4-trimethyl | - | c-bucyı
1-one 1-besen | sne, i bromo
cis- (hevabudroindane) | innit or Linear | hloro | 1,2,4-trimethyl | 1,2,4-trimethyl | trimethyl | trimethyl | I-methyl-4-vinyl | I-metnyi-4-vinyi
acid, pentyl ester (pe | | 2-ethyl-5-methyl | 2-ethyl-5-methyl | 1,3-dichloro | acult eacer | | | 2,3,5-trimethyl | 2,5-dimethyl | ,3-dichloro | , 3-dichloro | ,3-dichloro | I-methyl-Z-vinyl
I-methyl-3-vinyl | 2.4.6-trimethol | * Income | 2-, 3-methylpropyl ester | | | | octane, 3-ethvl | | | acetic acid, ci | cyclohexane, bromo | - | | pyrazine, 2-met | g (| n | ot 1 | | | trisuipnide, di | , | ١, | | pentane, 3-ethy | Ğ | | | benzene, t-butyl | 4 0 | `. | adamantane, 1-chloro | benzene, 1,2,4- | | | | | penzene, 1-meth
propenoic acid, | | | ι, ' | benzene, 1,3-d1 | י | octanal | | pyrazine, 2,3,5 | | _ | | | benzene, 1-meth | ٠, | | acid, | myrcene | | RETENTION
INDEX | 1960 | 0968 | 0968 | 6960 | 0960 | 6960 | 6960 | 6960 | 0240 | 0260 | 0260 | 0971 | 2/60 | 09/2 | 0973 | 0973 | 0973 | 0973 | 0974 | 0975 | 09/5 | 07.60 | 2780 | 0976 | 0977 | 1160 | 7160 | 1160 | 0977 | 87.60 | 0978
0978 | 0860 | 0860 | 0860 | 1860 | 0981 | 0981 | 0981 | 0981 | 0981 | 0982 | 0982 | 2860 | 2860 | 0982 | 0983 | 0983 | 0983 | STATIONARY PHASE SESSON SESSON SESSON SESSON SESSON SESSON OV-101 OV-101 OV-101 OV-101 OV-101 SESSON OV-11 SESSON SESSON SESSON SESSON SESSON SESSON SESSON RETENTION INDEX | COMPOUND NAME | | | | ester
r | | |--------------------|--|---|---------|------------|--| | | toluene, alpha-chioro (benzyl chloride)
benzene, 1,2,4-trimethyl
cyclohexane, cis-l-methyl-4-isopropyl
furan, 2-propionyl
furfural, 5-methyl | myrcene
myrcene
benzene, 1,2,4-trimethyl
benzene, 1,4-dichloro
benzene, 1-methyl-4-vinyl
menthene, 1-
menthene, 1-
pyrazine, 2-propyl
pyrazine, 2-propyl
pyrazine, 2-propyl
pyrazine,
2-propyl
hydrindene, dis (hexahydroindane) | tribal. | | menth 10, ene, p
decene, trans-5-
dichlorobenzene, 1,4-
ethane, hexachloro
pyridine, 3,4-dimethyl
benzene, 1-methyl-3-isopropyl
pentane, 1,5-dichloro
pinane, (+)cis-
succinic acid, dimethyl ester
benzene, 1-methyl-4-isopropyl
pentane, 2,4-dibromo | | RETENTION
INDEX | 0983
0984
0984
0984 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | COMPOUND NAME | | | | | | |--------------------|---|--|---|---|---| | M | benzene, 1,2,3-trimethyl chloroacetic acid, 1-methyl-3-butenyl ester cyclocatane benzene, 1,2,3-trimethyl benzene, 1,2,3-trimethyl benzene, 1,2,3-trimethyl | benzene, 1,2,3-trimethyl benzene, 1-isopropyl-4-vinyl benzene, 1-methyl-3-isopropyl benzene, 1,2-dichloro benzene, 1,4-dichloro benzene, t-butyl ethane, 1,2-diioho heptanoic acid, methyl ester propane, 1,1,2,3-tetrachloro benzene, 1,2,3-taimethyl benzene, 1,2-dichloro benzene, 1,2-dichloro benzene, 1,2-dichloro benzene, 1,2-dichloro benzene, 1,2-dichloro | ध म श्रूष्यम श्रू | indane dichloroacetic acid, 1-methylpropyl ester chane, 1,2-dibromo-1,1-dichloro benzene, 1,3-dichloro benzene, 1-methyl-2-isopropyl benzyl alcohol indene benzoquinone, 2-methyl-1,4- indane limonene limonene | cyclohexane, (1-methylpropyl) cyclohexane, (1-methylpropyl) cyclohexane, (1-methylpropyl) cyproperation (1-methylpropyl) dipentene, 1,4- hexane, 1-iodo menthene, 1- indene, 1- indene, 2-methylthio bromoacetic acid, 2-methylpropyl ester | | RETENTION
INDEX | 1004
1004
1004
1005
1005 | 1005
1006
1006
1007
1008
1008
1008
1009 | 001
1001
1001
1001
1001
1001
1001
1001 | 1014
1015
1016
1017
1017
1018
1018
1018 | 1019
1019
1019
1019
1019
1020
1020 | | COMPOUND NAME | 1 crotonate)
1-2- | | | | | រា | | | | | | | | | | | ester | | i. | 4 | | | | | | | | | | | | | | | | | ester | | | |--------------------|--|------|--------------------|--|----------------------|---|---------------|---------------------|--|------|---------------------------|--------|----------------------------------|------|-----------------------------|------|-------------------|------|-----------------------|------|------|------|----------------------|----------------------|--|----------------------|------|---------------------------|---------------------------|------|------|------|----------------------------|------|-------------|---------------------|-----------------------------|----------------------------------|----------------------| | 2 1 | butenoic acid, 2-, butyl ester (butyl cyclopenten-1-one, 2-hydroxy-3-methyl.indane propene, 2-methyl-3-phenyl-1- | | indene
limonene | cycloheptane, chloro
cyclohexane, butyl | nonane, 2,6-dimethyl | heptane, 1-bromo trichloroacetic acid, 2-propenyl ester | 1-ally1-3-met | butene, 4-phenyl-2- | cyclonexane, buryı
cyclohexane, butyl | | benzene, 1-ally1-3-methyl | ether, | diisopropyl ether, 2,2'-dichloro | | pyrazine, 2-ethoxy-3-methyl | | d, 2-methylpropyl | | benzene, 1,2-dichloro | | | | cyclopentane, pentyl | cyclopentane, pentyl | cyclopencane, pencyl
pyrazine, 2,3-dichloro | benzene, 1,3-diethyl | | benzene, 1-ally1-4-methyl | benzene, i-mechyr-y bromo | | | | benzene, 1-methy1-4-propy1 | | 1,5-diamino | 2-methyl (o-cresol) | bacetic acid, dimethylethyl | cvclohex-1-ene. 1-bromo-4-methvl | benzene, 1,4-diethyl | | RETENTION
INDEX | 1021
1021
1021
1021 | 1023 | 1023
1023 | 1026
1026 | 1026 | 1027 | 1028 | 1028 | 1028 | 1028 | 1029 | 1029 | 1029 | 1029 | 1029 | 1030 | 1030 | 1030 | 1031 | 1031 | 1032 | 1032 | 1032 | 1032 | 1032 | 1033 | 1033 | 1033 | 1033 | 1034 | 1034 | 1035 | 1035 | 1035 | 1035 | 1035 | 1035 | 1036 | 1037 | STATIONARY PHASE SE-30 | COMPOUND NAME | | ster
(paraldehyde)
(paraldehyde) | · · | anuric chloride) | |--------------------|--|--|--|--| | ۶ | l-methyl-2-bromo butyl , 2-ethyl-3-methoxy , 3-ethyl-2-methoxy 1,3-diethyl 1,3-diethyl 1,4-diethyl 1-methyl-4-propyl 1-methyl-4-propyl 1-none, 3-methyl-2- | coacetic acid, 2-propynyl eputyl butyl tric acid, 3-butenyl ester tric acid, 3-butenyl ester tric acid, 3-butenyl ester tric acid, 3-butenyl ester tric acid, 3-butenyl tric acid, 3-butenyl tric acid, 3-butenyl sec-butyl tric acid, 3-butyl tric acid, 3-butyl tric acid, 1, 4-diethyl butyl butyl | benzene, 1,4-diethyl benzene, 1-methyl-4-bromo dichloroacetic acid, 3-butenyl ester benzene, 1,2-diethyl benzene, 1,3-dimethyl-5-ethyl benzene, 1,3-dimethyl-5-ethyl benzene, 1,4-diethyl naphthalene, decahydro pyrazine, 2-isobutyl pyrazine, 2-isobutyl benzene, 1,3-dimethyl-5-ethyl benzene, 1,3-dimethyl-5-ethyl pyrazine, 2-chloro-3-ethyl naphthalene, decahydro naphthalene, decahydro naphthalene, decahydro | naphthalene, decahydro benzene, 1-methyl-2-propyl benzene, 1-methyl-2-propyl benzyl alcohol benzene, 1,2-diethyl pyrazine, 2-ethoxy-5-methyl benzene, neopentyl octane, 1-methyl-2-propyl ethylamine, 1-phenyl ethylamine, 1-phenyl limonene triazine, 2,4,6-trichloro-1,3,5- (cyanuric chloride) benzene, 1,2-diethyl | | retention
Index | 1037
1037
1037
1037
1038
1039
1039 | 1039
1040
1040
1040
1040
1040
1041
1041
104 | 1042
1042
1043
1043
1043
1043
1044
1044
1044 | 1045
1046
1046
1047
1047
1048
1049
1050
1050
1051
1051 | page 25 STATIONARY PHASE SE-30 SE-30 OV-101 OV-101 SE-30 SE-30 SE-30 OV-101 SE-30 OV-101 OV-101 OV-101 OV-101 OV-101 SE-30 SE-30 OV-101 OV-101 OV-101 SE-30 | COMPOUND NAME | | eneamino methyl ester (methomyl) | on, fumazone)
er (pentyl methacrylate)
ester | |--|--|---|---| | | limonene butane, 2,3-dibromo-2,3-dimethyl butane, tetrabromo ethane, hexachloro hexanoic acid, 2-propenyl ester octanol, 1- ethane, hexachloro ethane, hexachloro ethane, hexachloro formic acid, benzyl ester sulphide, dibutyl | butene, 2-phenyl-1- carbamic acid, 1-(methylthio) ethylideneamino methyl indene phenol, 4-methyl (p-cresol)
pyrazine, 2,5-dimethyl styrene, 2,6-dimethyl thiophene, 3-methylthio aniline, N.N-dimethyl benzene, 1,3-dimethyl-2-ethyl benzene, 1,4-dimethyl-2-ethyl chloroacetic acid, 3-methylbutyl ester chloroacetic acid, 3-methylbutyl ester propene, 2-(2-methylbutyl) pyrazine, 2-acetyl-3-methyl | aniline, N.N-dimethyl aniline, N.N-dimethyl benzene, 1,3-dimethyl-4-ethyl indene myrcenol, dihydro benzene, 1,4-dimethyl-2-ethyl benzene, 1,4-dimethyl-2-ethyl propane, 3-chloro-1,2-dibromo (nemagon, fu aniline, N.N-dimethyl-4-ethyl benzene, 1,3-dimethyl-4-ethyl benzene, 1,3-dimethyl-4-ethyl benzene, 1,3-dimethyl-4-ethyl benzene, 1-ethyl-3-vinyl benzene, 1-ethyl-3-vinyl benzene, 1-ethyl-3-vinyl benzene, 1-ethyl-3-vinyl benzene, 1-ethyl-3-vinyl benzene, 1-ethyl-3-vinyl benzene, 2-fedimethyl-3-ethyl propenoi a caid, 2-methyl promoacetic acid, 1,1-dimethylpropyl ester cyclopentamine decane, 2-bromo phenol, 2-bromo phenol, 3-methyl (m-cresol) pyrazine, 2,3-diethyl benzene, 1,2-dimethyl-4-ethyl | | RETENTION
INDEX
1052
1053
1053 | 1053
1054
1055
1055
1056
1057
1057
1057 | 1058
1059
1059
1059
1060
1061
1061
1061
1061
1061 | 1062
1062
1062
1062
1063
1064
1064
1064
1065
1065 | ETATIONARY PHASE ESCACO SE-30 Me silicone Nov-1 Me silicone Nov-1 SE-30 OV-1 SE-30 OV-1 SE-30 OV-1 SE-30 OV-1 SE-30 OV-1 SE-30 SE-30 OV-101 SE-30 OV-101 SE-30 SE-30 SE-30 SE-30 OV-101 SE-30 | RETENTION
INDEX | N COMPOUND NAME | |--------------------|--| | 1066 | benzene, 1-ethyl-2,5-dimethyl | | 1066 | 1-ethyl-3-vinyl | | 1066 | N | | 1066 | • | | 1067 | Denzene, I-L-Duryi-3-mernyi
curlohavane, lodo | | 1067 | | | 1067 | fenchone | | 1067 | | | 1067 | 2 | | 1067 | ή, | | 1068 | | | 1068 | dibromoacetic acid, metnyletnyl ester
Jirlomoacetic acid, 11-dimethylpropyl ester | | 1068 | yıpıopyı
xvl acrvl | | 1068 | tetramethvl | | 1068 | sulphide, methylphenyl | | 1069 | benzene, 1,2-dimethylpropyl | | 1069 | | | 1070 | | | 1070 | | | 1070 | | | 1070 | benzene, 1,3-dimetnyi-2-etnyi
benzene 1-ethul-2 4-dimethul | | 1070 | | | 1070 | ď | | 1070 | cyclohexane, trans-1,4-dichloro | | 1071 | | | 1071 | | | 1011 | benzoic acid, methyl ester | | 1072 | | | 1072 | | | 1072 | | | 1072 | -4-methy1 | | 1072 | tic acid, | | 1072 | pyrazıne, Z-metnyı-3-propyı | | 10/3 | Denzene, 1,3-dimethyl-3-vinyi
bonzene 1 4-dimethyl-2-ethyl | | 1073 | | | 1073 | ,0 | | 1073 | | | 1075 | 4 | | 1076 | | | 1076 | benzene, 1,3-dimethyl-2-ethyl | | 1076 | | | 1076 | benzene, 1-t-buty1-4-metny1 | | 1076 | يد | | 1076 | o-1,2-dibromo-1,2-dichloro | | 1076 | pyrazine, 2-isopropyl-3-methoxy | | 1076 | | | 1076 | | | 1076 | styrene, Z,5-dimethyl
kromosostic scid 1 2-dimethylpropyl aster | | 7701 | acia, 1,2-aimetnyipropyi | STATIONARY PHASE SE-30 SE-30 SE-30 OV-101 SE-30 OV-101 SE-30 OV-101 OV-101 OV-101 OV-101 SE-30 OV-101 OV-101 SE-30 OV-101 SE-30 | COMPOUND NAME | лe. | | | | yl ester (Tabun) | | | | | | | | | | | | | | | | | | | Đ. | i
i |--------------------|--|------|----------------------|------------------------|-------------------------|--------------------------------|------|--------------------|----------------------|----------------------|------------|-----------------------|-----------------------|------|----------------------|--------------|------|---------|--|---------------------------------------|------|------|-------------------|--------------------------|---------------|---------|------|------|------|--|--------------|------|-------|------|-------------------|--------|-------|------|-------------------------------|---------|--------------------------|---------------------|-------------------------|-------| | | 1-methyl-3-butenyl ester | | | | acid, dimethyl-, methyl | -methoxy
3-methoxy | | | | | ester | ester | | | | ester | | 3-ethyl | cyl
3-mathulbutul agtar | r Kanar Kun | i | | | 1.2-dimethylpropyl ester | - [] -] - [| | | | F | Уı | -3-ethyl | ı | ethyl | | | propyl | F-cf. | . 7 | 3-ethyl | 3-ethyl | yl | r | bul ester | | | | dichloroacetic acid, lindane, 1-methvl | | phenol, 2,6-dimethyl | phenol, 4-methyl (p-ca | | pyrazine, 2-18obuty1-3-methoxy | _ | cyclohexane, nitro | phenol, 2,0-dimethyl | phenol, 2,6-dimethyl | id, methyl | heptanoic acid, ethyl | styrene, 2,4-dimethyl | | indane, 1,1-dimethyl | cid, diethyl | | | Denzene, I-metnyibutyi
butonoic acid 2- 3-m | , , , , , , , , , , , , , , , , , , , | _ | | anisole, 3-chioro | acid. | | nonanal | | | | benzene, 1-etny1-2-vinyi
henzene, 1-methulbutul | 1,2-dimethyl | Ċ, | | | pyrazine, Z-butyl | 1 | • | • | benzene, 1,2-dimethyl-3-ethyl | | benzene, 1-ethyl-2-vinyl | butene, Z-phenyI-Z- | occamor, 3,7-dimecmy1-3 | scid, | | RETENTION
INDEX | 1077 | 1077 | 1078 | 1078 | 1078 | 1078 | 1079 | 1079 | 1079 | 1079 | 1080 | 1080 | 1080 | 1081 | 1081 | 1081 | 1082 | 1082 | 1082 | 1082 | 1083 | 1083 | 1084 | 1084 | 1084 | 1084 | 1084 | 1085 | 1086 | 1086 | 1087 | 1087 | 1088 | 1088 | 1088 | 1089 | 1089 | 1090 | 1090 | 1090 | 1091 | 1091 | 1091 | 1091 | STATIONARY PHASE SE-30 SE-30 OV-101 OV-101 OV-11 OV-101 SE-30 OV-101 SE-30 OV-101 SE-30 RETENTION INDEX 1092 1093 1093 1093 1094 STATIONARY PHASE 0V-101 07-1 OV-1 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 10094 10094 10095 10095 10095 10096 10096 10096 10096 10096 10097 SE-30 OV-1/SE-30 OV-101 0V-1 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 Me silicone OV-101 SE-30 SP-2100 07-1 0V-1 OV-101 SE-30 SE-30 OV-101 SE-30 SE-30 OV-101 Me silicone 0V-1 SP-2100 SE-30 SE-30 SE-30 SE-30 SP-2100 SE-30 ov-101 SE-30 Me silicone SE-30 page 29 INDEX STATIONARY PHASE SP-2100 SE-30 OV-101 SE-30 SE-30 SE-30 SE-30 07-1 SE-30 0V-101 0V-1 ``` butyric acid, 2-hydroxy, methyl ester styric acid, 2-hydroxy, methyl ester styrene, 2,6-dimethyl butenoic acid, 2-, pentyl ester (pentyl crotonate) decane, 2,6-dimethyl decane, 2,6-dimethyl anilino. 2,6-dimethyl benzene, 1,3-diethyl-5-methyl benzene, 1,3-diethyl-5-methyl benzene, 1,3-diethyl-5-methyl dibromoacetic acid, 2-propynyl ester cctanoic acid, methyl ester (methyl caprylate) ethanol, 2,2'-thiodi naphthalene, 1,2,3,4-tetrahydro (tetralin) benzene, 1,2,3,4-tetramethyl dichloroacetic acid, 3-methylbutyl ester pyrazine, 2,3-dimethyl-5-isopropyl benzene, 1,3,5-trichloro benzene, 1,3,5-trichloro benzene, 1,3,5-trichloro dibromoacetic acid, 2-propenyl ester benzene, 1-t-butyl-2-methyl propene, 1-(2-methylphenyl)-1- sulphide, bis (2-chloroethy1) (Mustard) benzene, 1,2,3,4-tetramethy1 benzoquinone, 2,6-dimethy1-1,4- bromoacetic acid, 3-methylbutyl ester ethylamine, 2-phenyl phenol, 2,5-dimethyl (2,5-xylenol) frichloroacetic acid, 3-butenyl ester phenol, 2,4-dimethyl (m-xylenol) naphthalene, 2-methyldecahydro thiophene, 2-ethyl pyrazine, 2-(ethylpropyl) pyrazine, 2-butyl-3-methyl propane, 1,1,2,3,3-pentachloro naphthalene, 2-methyldecahydro naphthalene, 2-methyldecahydro benzene, 1,2,3,4-tetramethyl benžene, 1-isopropyl-3-vinyl hexanoic acid, 2-ethyl Denzene, 1,2,3,4-tetramethyl benzene, 1,2,3,4-tetramethy1 cineole, 1,8- ethylamine, 2-phenyl pyrazine, 2-(1-methylbutyl) pyrazine, 2-(1-methylbutyl) terpineol (mixed isomers) benzene, 1,3-diisopropyl phenol, 2,4-dimethyl indene, 1-methyl benzene, pentyl heptane, 1-iodo octane, 1-bromo 11112 11113 11113 11114 11115 11116 11117 11118 11118 ``` OV-101 Me silicone OV-1 SP-2100 OV-1 SE-30 Me silicone OV-1 SE-30 DB-1 0V-1 0V-1 OV-101 OV-101 Me silicone DB-1 OV-101 OV-101 OV-101 SP-2100 00-1 OV-1 OV-1 INDEX STATIONARY PHASE RETENTION STATIONARY PHASE SP-2100 OV-1 0V-101 0V-1 OV1-1/SE-54 OV1-1/SE-54 SE-30 OV-101 SE-30 OV-101 SE-30 SP-2100 OV-1 SE-30 SE-30 SE-30 OV-101 OV-101 SE-30 ``` propenoic acid, 2-methyl, hexyl ester (hexyl methacrylate) undecame, 2-methyl function of the part of the property of the
presence of the phenoic acid, allyl ester phenoic, 3,5-dimethyl prazine, 5-methyl-2-(methylthio) partic acid, methyl ester trichloroacetic acid, 1,2-dimethylpropyl ester Pyrazine, 2-isopentyl pyrazine, 2-isopentyl trichloroacetic acid, 1-methyl-3-butenyl ester dibromoacetic acid, 1-methylpropyl ester acetic acid, heptyl ester benzene, 1-t-butyl-4-ethyl phenol, 3,4-dimethyl (3,4-xylenol) naphonane, 1-chloro pyrazine, 2,3-dimethyl-5-propyl acetic acid, phenyl, methyl ester benzoic acid, ethyl ester pyrazine, 2-acetyl-3,5-dimethyl benzene, 1,2,4-trichloro benzene, 1,2,4-trichloro benzene, 1,2,4-trichloro pyrazine, 2-1sobutyl-3-methoxy benzoic acid, ethyl ester menth-8-en-1-ol, P- aniline, 3-chloro benzene, 1,3,5-triethyl benzene, 1,4-diisopropyl nonanol, 1- phenol, 2,3-dimethyl naphthalene borneol, 2-methyliso phenol, 2,4-dichloro phenol, 2,4-dichloro naphthalene aniline, 4-chloro menthan-8-ol, p- menthan-1-ol, p- naphthalene phenol, 3-ethyl nethamphetamine phenol, 4-ethyl thianaphthene naphthalene 1154 11154 11155 11155 11156 11156 11156 11157 11157 11157 11157 11160 11160 11161 11163 11163 11163 11163 11163 11163 11164 11164 11165 11166 11167 11168 1154 1154 ``` OV-101 OV1-1/SE-54 0V-1 0V-1 OV-101 OV-101 SE-30 OV-1 OV-101 SE-30 OV-1 SE-30 OV-1 OV-1 SE-30 SE-30 OV-1 Me silicone OV-101 SE-30 OV-101 OV-1 OV-1 SE-30 SE-30 RETENTION INDEX STATIONARY Me silicone PHASE OV-101 0V-1 0V-1 0V-101 0V-1 OV-101 SE-30 SE-30 SE-30 SE-30 OV-1 OV-1 SE-30 phenol, 3-chloro phenol, 4-chloro benzothiazole isotetralin naphthalene pyrazine naphthalene 11170 11171 11171 11171 11172 11173 1173 benzothiazole decanol decanol naphthalene OV1-1/SE-54 SE-30 SE-30 SE-30 SE-30 OV-1 OV-101 SE-30 ov-101 SE-30 page 33 anisole, 2,6-dichloro amine, tri-n-butyl methenamine naphthalene decanol naphthalene 0V-1 0V-1 0V-1 0V-1 0V-1 0V-1 0V-1 0V-1 0V-1 0V-101 SP-2100 0V-101 SE-30 0V-101 SE-30 0V-101 SP-2100 SE-30 0V-1 0V-1 OV-101 0V-1 SE-30 | STATIONARY PHASE ==================================== | 0V-101
0V-1
0V-1
0V-1
SE-30
0V-101
0V-1
0V-1 | SP-2100
OV-1
SE-30
SE-30
OV-1
OV-1
OV-1
SE-30
SE-30
OV-101
OV-1 | OV-1
OV-1
SE-30
OV-1
SE-30
DB-1
SE-30
OV-101
SE-30
SE-30
SE-30 | SE-30
SE-30
SE-30
SE-30
SE-30
SE-30
OV-11
SE-30
OV-101
SE-30
SE-30
SE-30
SE-30
OV-101
SE-30 | |---|---|--|---|--| | COMPOUND NAME | | (trimethyl succinamide) | sthyl ester (methamidophos, Monitor, Tamaron) | Mylbutyl ester Mylbutyl ester (pelargonic acid) (pelargonic acid) Myl 1- rovinyl dimethyl ester (DDVP, dichlorvos) | | phenol, 4 | pyrazine, 2-pentyl pyrazine, 2-pentyl benzene, 1,4-dibromo benzene, 1-chloro-4-nitro benzoic acid, methylethyl ester salicylic acid, methyl ester phenol, 3-chloro pyrazine, 5-sec-butly-2,3-dimethyl aniline, 2-chloro-4-methyl benzene, 1-ethyl-2,3,5-trimethyl | benzene, 1-ethyl-2, 3, 5-trimethyl benzene, 1-ethyl-2, 3, 5-trimethyl butane, 2-methyl-2, 3, 5-trimethyl butane, 2-methyl-2, 3-dicarboxamide (trimethyl succinamide) cyclopentane, phenyl propene, 2-(3-vinylphenyl)-1-pyrazine, 3-butyl-2, 6-dimethyl benzene, 1,3-dibromo cyclobexanone, 4t-butyl benzene, 1-chloro-2-nitro acetic acid, octyl ester octanoic acid, 2-keto, methyl ester ctanoic acid, 2-keto, methyl ester pyrazine, 2,3-dimethyl-5-isobutyl thianaphthene toluidine, 6-chloro-n- | benzene, hexachloro (HCB) butadiene, hexachloro tetrasulphide, dimethyl aniline, 2,6-dichloro phenol, 2,4,6-trimethyl phosphoramidothioic acid, 0,S-dimethyl meth-1-ene, p- terpineol, 1apha- benzene, 1,3,5-triethyl butadiene, hexachloro phenol, 2,6-dichloro menth-8-en-2-ol, p- menth-1-ene, 2,6-dichloro phenol, 2,6-dichloro menth-8-en-2-ol, p- menth-8-en-2-ol, p- menth-8-en-2-ol, p- | ic acid, 3-metin
hoxy i, methyl ester
hoxy ridic acid, medimethyl ester
dimethyl ester
stylthio-3-metly
edimethyl dimethyl dimethyl dimethyl ridi, 2,2-dichlo | | RETENTION
INDEX | 1192
1192
1193
11193
1194
1195 | 1195
1195
1196
1196
1196
1197
1199
1200
1200 | 1202
1202
1202
1204
1204
1205
1206
1206
1206 | 1208
1210
1210
1211
1211
1211
1215
1215
1216
1216
1220
1220 | STATIONARY PHASE SE-30 Me silicone SE-30 OV-101 SE-30 ``` dibromoacetic acid, 1,1-dimethylpropyl ester phosphoric acid, 2,2-dichlorovinyl dimethyl ester (DDVP, dichlorvos) anisole, 3,5-dichloro butadiene, hexachloro adipic acid, dimethyl ester benzene, 1,2,4-triethyl pyrazine, 2-(2-methylpentyl) dibromoacetic acid, 1-methyl-3-butenyl ester dibromoacetic acid, 1,2-dimethylpropyl ester anisole, 2,4-dichloro anisole, 2,5-dichloro pyrazine, 5-butyl-2,3-dimethyl bromoacetic acid, cis-3-hexenyl ester dichloroacetic acid, trans-3-hexenyl ester naphthalene, 1,2,3,4-tetrahydro (tetralin) benzoic acid, trimethylsilyl derivative benzoquinone, 2-methoxy-1,4- bromoacetic acid, trans-3-hexenyl ester benzoic acid, trimethylsilyl derivative benzoic acid, ethyl ester pyrazine, 2-ethoxy-5-isopropyl-3-methyl anisole, 3,5-dichloro trichloroacetic acid, 4-pentenyl ester pyrazíne, 2-methyl benzaldehyde, 4-methoxy (anisaldehyde) benzaldehyde, 4-methoxy (anisaldehyde) benzaldehyde, 4-methoxy (anisaldehyde) pyrazine, 2-(2-methylpentyl) acetic acid, linalyl ester pyrazine, 2-isobutyl-3,5,6-trimethyl benzoic acid, 2-propynyl ester naphthalene, 2-methyl toluidine, 2-chloro-p- pyrazine, 2-ethyl-3-methylthio anisole, 3,5-dichloro benzoic acid, 2-propenyl ester methane, triiodo propanoic acid, benzyl ester benzoic acid, propyl ester aniline, 2-chloro-4-methyl toluidine, 6-chloro-o- anisole, 2,5-dichloro butan-2-one, 4-phenyl octane, 1-iodo benzene, n-hexyl phenol, 2-amino decane, 1-bromo nonane, 1-bromo phenol, 4-bromo mephentermine soquinoline quinoline quinoline 12233 12225 12226 12226 12230 12230 12332 12336 12336 12336 12336 12336 12336 12336 12336 12336 12336 12336 12337 12338 12338 1244 ``` SE-30 Me silicone SE-30 OV-101 SE-30 OV-101 OV-1 SE-30 00-1 OV-101 Me silicone OV-101 OV-101 SE-30 OV-101 OV-101 SE-30 SE-30 Me silicone SE-30 SE-30 00-1 OV-1 SE-30 Me silicone OV-101 SE-30 SE-30 SE-30 OV-101 SE-30 OV-101 SE-30 | COMPOUND NAME |--------------------|----------------------|---|---|---|--|----------------------
--|--|--------------------------|--|----------------------|--|------|---|---------------------------|-------------------|--|-----------------|---|------|---------------------------------|------|------|------------------------------------|------|----------------------------|--------|--------|-----------------------|--------------|--|--| | | -00 | decanol, 1-
pyrazine, 5-isobutyl-3-methyl-2-methyox
pyrazine, 1-chloro
anisole, 3,4-dichloro | toluene, -chloro-2-nitro tribromoacetic acid, methylethyl ester | anisore, 2,5-droinethyl
phenol, 2,3,5-trimethyl
phenol, 4-chloro-3-methyl | benzene, pentamethyl
dichloroacetic acid, cis-3-hexenyl ester | | phenol, 3-bromo
anisole, 2,4-dichloro | <pre>pyrazine, 2-isobutyl-3,5,6-trimethyl acetic acid, 2-hydroxyphenyl, methyl ester</pre> | phenyl, trimethylsilyl d | pyrazine, z-cnioro-3-isobucyi-3-mechyi.
phenelezine | benzene, pentamethyl | benzene, pentamethyl
benzene, pentamethyl | ene, | naphthalene, i-methyl
sulphide, dibentvl | toluene, 4-chloro-2-nitro | ole, 2,4-dichloro | ethane, 1,1,2,2-tetrabromo
furfural, 5-(hydroymethyl) | phenol, 3-bromo | anisole, 3,4-dichloro
phenol, 2-isopropyl-5-methyl | | citrai
naphthalene, 2-methvl | | | pyrazine, z-isopropyl-3-methylthio | | benzene, 1,1-diethylpropyl | อ้ | | anisole, 3,4-dichloro | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | DALL TELLINAL COLUMN CO | | | pyra
tolu
tolu | deca
Pyra
deca | tolu | anisole
phenol,
phenol, | benz
dich | dibr | phen | pyra | acet | pyra
phen | penz | benz | naph | naph | tolu | anis | etha
furf | phen | anıs | ch10 | citrai | naph | naph | Pyra | phen | penz | undeca | acetic | an13 | napn
tria | naph | Ž, | | RETENTION
INDEX | 1256
1256
1256 | 1257
1257
1258
1259 | 1259 | 1260
1260
1260 | 1261
1261 | 1261
1262
1262 | 1262 | 1263 | 1264 | 1264
1265 | 1266 | 1266 | 1267 | 1268 | 1268 | 1269 | 1269
1270 | 1270 | 1271 | 1272 | 1272 | 1273 | 1273 | 1273 | 1274 | 1275 | 1276 | 1281 | 1281 | 1282 | 1283 | 0071 | ETATIONARY PHASE WITHOUSE WITHOUS Me silicone OV-1 SE-30 OV-1 SE-30 OV-1 STATIONARY PHASE Me silicone OV-1 SE-30 OV-1 SP-2100 OV-101 SE-30 0V-1 OV-101 OV-101 OV-101 SE-30 SE-30 SP-2100 OV-1 OV-1 RETENTION INDEX 0V-1 0V-101 SE-30 SE-30 DB-1 SE-30 SE-30 OV-101 0V-1 00-1 DB-1 page 37 Me silicone OV-1 SE-30 OV-1/SE-30 SE-30 OV-1 SE-30 0V-1 0V-101 SE-30 SE-30 0V-1 SE-30 SE-30 OV-101 0V-101 OV-101 DB-1 OV-1 Me silicone SE-30 OV-1/SE-30 OV-1 Me silicone OV-1 SE-30 | COMPOUND NAME | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | er (eptam, EPTC) | ester | | | | 1 | 4 | | | | | | | | | | |--------------------|---|---------------------|------|--|------|------|--|--------|--------------------------------------|------|--|---|-----------|-----------------------------|-----------------|--------------------------|-------------------------|-----------------|----------------------|----------------------|-----------------------------|------|------|-------------------|---------------------|---------------------------------------|------|------|-------------------------|--|-------------|--------------------------|-------------------------|------|---|----------|-----------------------------|----------------------|------|----------------------------|------|----------------------------|------|-----------------------| | | naphthalene, 2-methyl
pimelic acid, dimethyl ester | cyclohexane, phenyl | | benzene, Z,5-dichloronitro
nicotine | | | pyrazine, Z,3-dimetnyi-3-18opentyi
henzoic acid. isobutvl ester | e, hex | dibromoacetic acid, 4-pentenyl ester | - | butyric acid, beta-hydroxy, metnyi ester | penzene, 2,4-alchiolonicio
tribromoacetic acid. 2-propynyl ester | hyl ester | butanoic acid, benzyl ester | decane, 1-bromo | anisole, 2,4,6-trichloro | phenol, 2,4,5-trichloro | chloroentermine | octane, 1,8-dichloro | adamantane, 2-chloro | formic acid, cinnamyl ester | | | phenol, 4-hydroxy | quinoline, /-mecnyr | puenor, 3-amino
aninolina 6-mathul | | | lipropylthio, s-ethyl e | trichloroacetic acid, trans-3-hexenyl es | isophedrine | anisole, 2,3,6-trichloro | phenol, 2,4,5-trichloro | | trichloroacetic actd, cis-3-neveny: eacet | binhenyl | cyclopentadiene, hexachloro | naphthalene, 1-ethyl | og. | adipic acid, diethyl ester | | Denzene, z,3-dichiotonitro | | phenol, 2,6-dimethoxy | | RETENTION
INDEX | 1313
1313 | 1314 | 1314 | 1315 | 1316 | 1316 | 1317 | 1318 | 1318 | 1319 | 1320 | 1322 | 1325 | 1325 | 1326 | 1327 | 1327 | 1320 | 1330 | 1332 | 1332 | 1332 | 1334 | 1334 | 1334 | 1335 | 1336 | 1336 | 1337 | 1337 | 1339 | 1341 | 1341 | 1342 | 1342 | 1343 | 1343 | 1343 | 1343 | 1344 | 1344 | 1344 | 1346 | 1347 | RETENTION Me silicone OV-101 OV-1 STATIONARY PHASE 00-101 OV-1 OV-1 Me silicone SE-30 OV-101 OV-101 SE-30 page 39 phenol, 3-hydroxy dichlorobenzyl ethyl ether, 2,4-phenol, 3-iodo anisole, 2,3,6-trichloro benzoic acid, 1-methylbutyl ester dichlorobenzyl ethyl ether, 2,4-hexanoic acid, hexyl ester pyrazine, 2-chloro-3-methyl-5-(2-methylbutyl) dichlorobenzyl ethyl ether, 2,4-Derical acid, butyl ester benzoic acid, 1-methyl-3-butenyl ester phenol, 2,4,5-trichloro pyrazine, 3-methyl-2-methoxy-5-(2-methylbutyl) pyrazine, 5-isopropyl-3-methyl-2-(methylthio) cinnamic acid, methyl ester pyrazine, 2-(2-methylbutyl)-3,5,6-trimethyl benzoic acid, trans-2-butenyl ester benzoic acid, 2-chloroethyl ester naphthalene, 2-ethyl tribromoacetic acid, 1-methylpropyl ester phėnol, 2,4,5-trichloro benzoic acid, 1,2-dimethylpropyl ester naphthalene, 1-ethyl phenol, 2-methoxy-4-propenyl dichlorobenzyl ethyl ether, 2,4pyrazine, 2,3-dimethyl-5-pentyl benzoic acid, butyl ester naphthalene, 1-chloro naphthalene, 1-chloro naphthalene, 2-chloro pyrazine, 2-ethoxy benzoic acid, ethyl ester quinoline, 4-methyl anisole, 2,3,6-trichloro biphenyl anisole, 2,3,6-trichloro phenol, 2,4,6-trichloro undecañol, 1-aniline, 3,5-dichloro fluoranthene naphthalene, 1-chloro undecane, 1-chloro benzene, n-heptyl diphenyl ether acenaphthene biphenyl biphenyl biphenyl biphenylbiphenyl biphenyl bipheny1 biphenyl eugenol 1368 1369 1369 1370 1370 1371 1371 1367 1368 1368 SE-30 SE-30 Me silicone OV-101 SE-30 SE-30 SE-30 SE-30 OV-101 OV-101 OV1-1/SE-54 OV1-1/SE-54 OV-101 oV-1 SE-30 SP-2100 0V−1 Me silicone SE-30 OV-1 OV-101 SE-30 SE-30 SE-30 OV-101 SE-30 OV-101 SE-30 CP Sil 5CB OV-1 SE-30 CP Sil 5CB SE-30 SE-30 SE-30 2CB OV-101 CP Sil CP Sil 5CB | | | | (a) | | |--------------------|--
--|---|--| | | | | n, betë
n, alph | | | | | · | [phosdri
[phosdri | | | COMPOUND NAME | | | tetradecene, 1- naphthalene, 2,7-dimethy1 phosphoric acid, (1-methoxycarboxypropen-2-y1) dimethy1 ester (phosdrin, beta) naphthalene, 1,3-dimethy1 phenol, 3,5-dichloro phenol, 2-methoxy-4-propy1 phosphoric acid, (1-methoxycarboxypropen-2-y1) dimethy1 ester (phosdrin, alpha) toluene, 2,6-dinitro butenoic acid, 3-{(dimethoxyphosphiny1)oxy]-2- (mevinphos) pyrazine, 2-(1-methylpropy1) | | | COMP | | min) | tetradecene, 1- naphthalene, 2,7-dimethyl phosphoric acid, (1-methoxycarboxypropen-2-yl) dimethyl es naphthalene, 1,3-dimethyl phosphoric, 3,5-dichlorvy-4-propyl phosphoric acid, (1-methoxycarboxypropen-2-yl) dimethyl es toluene, 2,6-dinitro butenoic acid, 3-{ (imethoxyphosphinyl) oxyl-2- (mevinphos) pyrazine, 2-(1-methylpropyl) acetic acid, decyl ester | rivative | | | ntyl) | - (geosmin)
- (geosmin)
ester | open-2-
open-2-
yl)oxy] | ilyl de | | | phosphoric acid, tripropyl ester biphenyl pyrazine, 2-propyl diphenyl ether diphenyl ether naphthalene, 1-chloro aniline, 3,4-dichloro naphthalene, 2,6-dimethyl naphthalene, 2,3-dimethyl-5-(2-methylpentyl) pyrazine, 2,3-dimethyl-5-(2-methylpentyl) aphthalene, 1,6-thyl ester dodecano; 2,6,10-trimethyl naphthalene, 1-ethyl propane, 1,1,1,2,3,3,3-heptachloro cyclohexene, 1-phenyl | decalol, trans-1,10-dimethyl-trans-9- (ge decalol, trans-1,10-dimethyl-trans-9- (ge pytrane and line, 3,4-dichloro naphthalene, 2,6-dimethyl tribromoacetic acid, 2-methylpropyl ester naphthalene, 2,6-dimethyl dodecanal dodecanal dodecanal 2,7-dimethyl | sarboxypr
sarboxypr
phosphin | phenol, 4-iodo propanoic acid, 3-phenyl, trimethylsilyl derivative quinoline, 2,6-dimethyl quinoline, 2,7-dimethyl acetic acid, decyl ester azulene, 5-methyl acidchexylamine naphthalene, 1,3-dimethyl tetradecane azonlene, 1-methyl azonlene, 1,3-dimethyl naphthalene, 1,6-dimethyl naphthalene, 1,6-dimethyl naphthalene, 2-vinyl propanoic acid, 3-phenyl, trimethylsilyl derivative | | | phosphoric acid, tripropyl ester biphenyl dyrazine, 2-propyl diphenyl ether naphthalene, 1-chloro aniline, 3,4-dichloro naphthalene, 2,6-dimethyl naphthalene, 2,3-dimethyl hodecanoic acid, ethyl ester dodecane, 2,5,10-trimethyl naphthalene, 1-ethyl propani, 1,1,1,2,3,3,3-heptachloro naphthalene, 1,2-3-dimethyl | dimethyl
dimethyl
ethyl
ethyl | tetradecene, 1- naphthalene, 2,7-dimethyl phosphoric acid, (1-methoxyc naphthalene, 1,3-dimethyl phenol, 2,5-dichloro phenol, 2-methoxy-4-propyl phosphoric acid, (1-methoxyc toluene, 2,6-dinitro butenoic acid, 3-{(dimethoxyc pyrazine, 2-(1-methylptopyl) acetic acid, decyl ester | anyl, tr
nyl
nyl
ster
sthyl
sthyl | | | phosphoric acid, tripropyl biphenyl 2-propyl diphenyl ether diphenyl ether appthalene, 1-chloro aniline, 3,4-dichloro appthalene, 2,6-dimethyl naphthalene, 2,6-dimethyl pyrazine, 2,3-dimethyl accancic acid, ethyl ester dodecane, 2,6,10-trimethyl naphthalene, 1-chyl propane, 1,1,2,3,3,3-hepl maphthalene, 2,3-dimethyl arghthalene, 1,1,2,3,3,3-hepl arghthalene, 1-phenyl | decalol, trans-1,10-dimetidecalol, trans-1,10-dimetipyrene, 3,4-dichloro naphthalene, 2,6-dimethyl tribromoacetic acid, 2-me naphthalene, 2,6-dimethyl dodecanal dodecanal dodecanal dodecanal achebralene, 2,7-dimethyl naphthalene, 2,7-dimethyl achebralene, 2,7-dimethyl achebralene, 2,7-dimethyl achebralene, 2,7-dimethyl achebralene, 2,7-dimethyl | tetradecene, 1- naphthalene, 2,7-dimethyl phosphoric acid, (1-methox naphthalene, 1,3-dimethyl phenol, 3,5-dichloro phenol, 2-methoxy-4-propyl phosphoric acid, (1-methox toluane, 2,6-dimitro butenoic acid, 3-{(dimethox pyrazine, 2-(1-methylpropy) pyrazine, 2-(1-methylpropy) | phenol, 4-iodo propanoic acid, 3-phenyl, quinoline, 2,6-dimethyl quinoline, 2,7-dimethyl acetic acid, decyl ester azulene, 5-methyl dicyclohexylamine argyclohexylamine arghthalene, 1,3-dimethyl acenaphthylene aculene, 1-methyl acenaphthylene naphthalene, 1,6-dimethyl naphthalene, 1,6-dimethyl naphthalene, 1,6-dimethyl propanoic acid, 3-phenyl, | | | biphenyl biphenyl pyrazine, 2-pr. diphenyl ether diphenyl ether naphthalene, 1. aniline, 3,4-d. naphthalene, 2,2-d. pyrazine, 2,3-decanoic acid, dodecane, 2,6, naphthalene, 1,1,1 naphthalene, 1,7,1 naphthalene, 1,7,1 naphthalene, 1,7,1 naphthalene, 1,7,1 naphthalene, 1,7,2 orgolohexene, 1,7,1 | decalol, tran
decalol, tran
Pyrene, 3,4-
naphthalene,
tribromoaceti
naphthalene,
biphenyl
dodecanal
dodecanal
dodecanal | alene, oric ac alene, 3,5-d , 2-met, oric ac acid, | phenol, 4-iodo, propanoic acid, 3 quinoline, 2,6-di, quinoline, 2,7-di acetic acid, decy azulene, 5-methyl aicyclohexylamine naphthalene, 1,3-azulene, 1,3-naphthalene, 1,6-naphthalene, 1,6-naphthalene, 2-vi propanoic acid, 3 | | 75. II | phosphorbiphenyl by razine diphenyl diphenyl diphenyl naphthallaniline, naphthallapyrazine decanoic dodecano propane, naphthal propane, naphthal cyclohex | decalol,
decalol,
pyrene
aniline,
naphthale
tribromoa
naphthale
biphenyl
dodecanal
dodecanal | tetradecene,
naphthalene,
phosphoric a
naphthalene,
phenol, 2-me
phosphoric a
toluene, 2,6
butenoic aci
pyrazine, 2,6
acetic acid, | phenol, 4-i
propanoic a
quinoline,
quinoline,
acetic acid
azulene, 5:
dicyclohexy
naphthalene
tetradecane
azulene, 1:
acenaphthyl
naphthalene
naphthalene
naphthalene
naphthalene
naphthalene | | RETENTION
INDEX | 1372
1374
1374
1376
1376
1377
1377
1379
1379
1379
1380 | 1384
1385
1385
1387
1387
1389
1389
1389 | 1389
1390
1391
1391
1392
1394
1394
1394 | 1398
1399
1399
1400
1400
1400
1402
1402
1402
1403 | STATIONARY PHASE Well SE-30 OV-101 OV-101 OV-11 OV-11 OV-101 SE-30 OV-101 OV-101 SE-30 OV-101 OV-101 SE-30 OV-101 OV-101 SE-30 OV-101 OV-101 SE-30 STATIONARY PHASE OV-101 OV-1 OV-1 SE-30 SE-30 OV-101 SE-30 SE-30 OV-101 OV-1 OV-101 SE-30 DB-1 SE-30 SE-30 OV-1 OV-101 OV-101 OV-101 SE-30 SE-30 OV-101 OV-101 Me silicone SE-30 OV-1 SE-30 0V-1 DB-1 0V-1 0V-1 SE-30 SE-30 SP-2100 SE-30 SE-30 page 41 | COMPOUND NAME | | l ester (orthene, acephate) (tillam) | (mevinphos) | | |--------------------|---|--
--|---| | | anisole, 2,3,5-trichloro benzene, pentyl dibromoacetic acid, cis-3-hexenyl ester naphthalene, brome isomer phthalic acid, dimethyl ester benzeic acid, methyl ester, 4-hydroxy phenol, 2,4-dinitro anisole, 2,4,5-trichloro tribromoacetic acid, 1-methyl-3-butenyl ester anisole, 2,4,5-trichloro anisole, 2,4,5-trichloro anisole, 2,4,5-trichloro anisole, 2,4,5-trichloro | and an all and a startistic of | Denzoquinone, 2,0-d1 (methoxymethyl)-1,4- Denzoquinone, 2,6-di (methoxymethyl)-1,4- cinnamic acid, ethyl ester anisole, 3,4,5-trichloro naphthalene, 1,8-dimethyl phthalic acid, dimethyl ester butenoic acid, dimethyl ester benzoic acid, 3-[(dimethoxyphosphinyl)oxy]-2- benzoic acid, 3-[dimethyl ester benzoic acid, dimethyl ester phthalic acid, 2,2-dichloroethyl ester phthalic acid, 2,2-dichloroethyl ester benzoic acid, pentyl ester benzoic acid, pentyl ester benzoic acid, pentyl ester clofibrate | pyrazine, 2-chloro-3-methyl-5-(2-methylpentyl) anisole, 3,4,5-trichloro phthalic acid, dimethyl ester tribromoacetic acid, 1-methylbutyl ester dibenzofuran acetic acid, 4-hydroxyphenyl, methyl ester dodecanol, 1- naphthalene, 1-n-propyl methane, diphenyl anisole, butylated hydroxy isomer ecgonine, methyl ester naphthalene, chloromethyl tetradecane, 2-methyl | | retention
Index | P | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | STATIONARY PHASE SE-30 SE-30 SP-2100 OV-1 OV-1 SE-30 OV-1 OV1-1/SE-54 Me silicone OV-101 SC-30 OV-101 SE-30 OV-101 SE-30 OV-101 SE-30 OV-101 SE-30 RETENTION INDEX | tridecane, 2,6,10-trimethyl dichlorobenzyl propyl ether, 2,4- dichlorobenzyl propyl ether, 2,4- anisole, 2,3,4-trichloro biphenyl, methyl dichlorobenzyl propyl ether, 2,4- naphthalene, 2-n-propyl pyrazine, 2-methyl-3-phenoxy dichlorobenzyl propyl ether, 2,4- | I de VI este este est | | | |--|--|---------------------------------------|--| | 1463
1464
1465
1465
1465
1465
1465
1465 | 14669
14669
14669
14699
1471
1471
1471
1480
1488 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | STATIONARY PHASE | COMPOUND NAME | derivative derivative derivative | | |--------------------|--|--| | | cinnanic acid, trimethylailyl derivativa cinnanic acid, trimethylailyl derivativa cinnanic acid, methyl caster anisole, 2,3,4,6-tetrachloro banzoic acid, methyl sester, 4-hydroxy, acetic acid, 2-methoxyphenyl, trimethylailyl derivative haronic acid, 2-methoxyphenyl, trimethylailyl derivative haronic acid, 2-methoxyphenyl, trimethylailyl derivative banzene, pentachloro banzene, pentachloro maleic acid, dinhyly sester hapkhalane, 2-butyl benzene, pentachloro maleic acid, dinhyly sester hapkhalane, 1,37-trimethyl acetic acid, 4-methoxyphenyl, trimethylailyl derivative banzocatic acid, 4-methoxyphenyl, trimethylailyl derivative acetic acid, 4-methoxyphenyl, trimethylailyl derivative acetic acid, 4-methoxyphenyl, trimethylailyl derivative maphhalane, 2,3,6-tetrachloro acetic acid, 4-methoxyphenyl, trimethylailyl derivative acetic acid, 4-methoxyphenyl, trimethylailyl derivative mephensain mephensain anisole, 2,3,6-tetrachloro acetic acid, 4-methoxyphenyl, trimethylailyl derivative acetic acid, 4-methoxyphenyl, trimethylailyl derivative acetic acid, 4-methoxyphenyl, trimethylailyl seter propanor acid, dimethyl seter naphthalane, 2,3,6-trimethyl anisole, 2,3,6-trimethyl seter naphthalane, 2,3,6-trimethyl seter acenaphthalane, 2,3,6-trimethyl seter acinnanic acid, amethyl seter chano, pentabrono dodecanora acid, acid, methyl seter cinnanic acid, amethyl seter anisole, 2,3,5-tetracholoro benzicle acid, 4-dimethylanino benzicle acid, 4-dimethylanino benzicle acid, 4-dimethylanino benzicle acid, 3-5-deteracholor anisole, 2,3,5-tetracholoro acibanic acid, 3-deteracholor anisole, 2,3,5-tetracholoro acibanic acid, 3-deteracholor anisole, 2,3,5-tetracholoro acibanic acid, 3-deteracholoro acibanic acid, 3-deteracholoro acide, 3-deteracholoro acide, 3-deteracholoro acide, 3-deteracholoro acide, 3-deteracholoro acide, 3-deteracholoro acide, 4-deteracholoro 4-deter | naphthalene, 2,3,5-trimethyl
fluorene | | RETENTION
INDEX | 1499
1590
1590
1590
1590
1590
1590
1590
15 | 1533
1535 | SE-30 OV-1 SE-30 SE-30 SE-30 OV-1 SE-30 OV-1 SE-30 OV-1 SE-30 OV-1 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 OV-1 SE-30 OV-1 SE-30 OV-1 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 こうかい こうしょう こうこう ダイン はいしゅう できない こうしょう かいかい かいしゅう はいかい しゅうしゅん 大きの 変数 変数 かいしょう しゅうしゅう | 1953 salioqid acid, pentli ester 1959 ashliniq dacid, pentli ester 1959 estbaind acid, pently ester 1959 estbaind acid, Navamethylane, s-ethyl ester (molinate) 1954 diploca acid, dipropyl ester 1954 diploca acid, dipropyl ester 1955 diploca acid, dipropyl ester 1956 bhtain meso-1,2,3,4-tetrabromo 1957 phthalic acid, disthyl ester 1958 phthalic acid, disthyl ester 1959 1950 1951 phthalic acid, disthyl ester 1952 phthalic acid, disthyl ester 1953 phthalic acid, disthyl ester 1954 phthalic acid, alternyl ester 1955 phthalic acid, alternyl ester 1956 phthalic acid, alternyl ester 1957 phthalic acid, alternyl ester 1957 phthalic acid, esthyl ester 1958 phthalic acid, esthyl ester 1958 phthalic acid, esthyl ester 1959 phthalic acid, esthyl ester 1950 phthalic acid, esthyl ester 1950 phthalic acid, esthyl ester 1951 phthalic acid, esthyl ester 1952 phthalic acid, esthyl ester 1953 phthalic acid, alternyl acid acid acid acid acid acid acid acid | 11 | THE REAL PROPERTY AND ADDRESS OF THE ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY P |
--|--------|--| | aniline, 4-chloro-2-nitro carbanic acid, N.N-hexamethylene, benzoic acid, dipropyl ester decane, 1,10-dichloro fluozene phthalic acid, diethyl ester butane, meso-1,2,3,4-tetrabromo clofibrate phthalic acid, diethyl ester phthalic acid, diethyl ester phthalic acid, diethyl ester phthalic acid, diethyl ester phthalic acid, cis-3-hexenyl ester phralic acid, cis-3-hexenyl ester prazine, 3-methyl-5-(2-methylbuty tributyrin (glyceryl tributyrate) dodecane, n-nonyl naphthalene, 1-bromo benzoic acid, 2-hydroxyphenyl, trim azobenzene benzoic acid, 3-hydroxy, trimethyl tetradecane, 2,6,10-trimethyl acetic acid, 2-hydroxyphenyl, trim phthalic acid, diethyl ester cettic acid, 2-hydroxyphenyl, trim phthalic acid, diethyl ester d-nitro, 2-propenyl phrazine, 2-pentyl phrazine, 2-pentyl phenol, 4-acetyl acobcanoic acid, diethyl ester phthalic acid, diethyl ester | 535 | salicylic acid, pentyl ester | | carbamic acid, N,N-hoxamethylene, benzoic acid, trans-3-hexenyl ester adoptic acid, dipropyl ester decane, 1,10-dichoro fluorene phthalic acid, diethyl ester benzoic acid, hexyl ester benzoic acid, diethyl ester phthalic acid, diethyl ester phthalic acid, cis-3-hexenyl ester phthalic acid, cis-3-hexenyl ester phthalic acid, cis-3-hexenyl ester phranic acid, cis-3-hexenyl ester pyrazine, 3-methyl-5-(2-methylbuty tributyrin (glyceryl tributyrate) acceric acid, 2-hydroxyphenyl, trim acceric acid, 3-hydroxyphenyl, trim accence n-nonyl ester phthalic acid, 2-hydroxyphenyl, trim accence acid, 3-hydroxyphenyl, trim accetic acid, 3-hydroxyphenyl, trim benzoic acid, 3-hydroxyphenyl, trim accetic acid, alethyl ester phthalic acid, 2-hydroxyphenyl, trim benzoic acid, 2-hydroxyphenyl, trim chlorobenzyl butyl ether, 2,4-naphthalene, 2-n-butyl phthalic acid, diethyl ester dichlorobenzyl butyl ether, 2,4-tetradecane, 3,7,11-trimethyl benzoic acid, propyl ester dichlorobenzyl butyl ether, 2,4-phthalic acid, propyl ester, phthalene, 1-nitro aniline, N-phenyl benzoic acid, 4-nitro, 2-pentyl benzoic acid, 4-nitro, 2-pentyl benzoic acid, 4-nitro, 2-pentyl benzoic acid, athyl ester naphthalene, 1-nitro allorobene, allor | 38 | | | benzoic acid, decane, 1,10- fluorene phthalic acid, becane, neso- clofibrate acid, phthalic acid, phthalic acid, pyrazine, 3-n tributyrin (gheadecane, acetic acid, phthalic acid, phthalic acid, phthalic acid, phthalic acid, acetic acid, acetic acid, acetic acid, phthalic acid, phthalic acid, benzoic acid, controlly acetic acid, acetic acid, acetic acid, acetic acid, bhthalic acid, benzoic acid, controlly acetic acid, acetic acid, acetic acid, bhthalic acid, benzoic acid, controlly acetic acid, acetic acid, acetic acid, benzoic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, benzoic acid, aniline, N-ph pyrazine, 2-phenzoic acid, phenol, 4-acetic acid, a | 39 | acid, N.N-hexamethylene, | | adipic acid, decane, 1,10-fluorene phthalic acic butane, meso-clofibrate phthalic acid, phthalic acid, phthalic acid, phrazine, 3-ntributyrin (dodecane, 1-kpenzoic acid, phthalic dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthaline, N-phenzoic acid, phenzoic acid, phenzoic acid, phenzoic acid, phenzoic acid, phenol, 4-acedodecanoic acid, phenol, 4-acedodecanoic acid, phthalic acid, phthalic acid | 41 | -hexenyl | | decane, 1,10- fluorene phthalic acid butane, meso- clofibrate phthalic acid phthalic acid, phrazine, 3- tributyrin (g dodecane, 1- benzoic acid, azobenzene, n-nc naphthalic acid, azobenzene benzoic acid, benzoic acid, azobenzene phthalic acid, benzoic acid, dectic acid, actic acid, benzoic acid, dectic acid, dectic acid, benzoic acid, dichlorobenzy naphthalic acid benzoic acid, dichlorobenzy naphthalic acid benzoic acid, dichlorobenzy naphthalic acid benzoic acid, dichlorobenzy phthalic phenol, 4-ace dodecanoic ac naphthalene, fluorene propane, octa | 545 | | | fluorene phthalic acic butane, meso- clofibrate phthalic acid phthalic acid, phthalic acid, pyrazine, 3-n tributyrin (g dodecane, 1-b benzoic acid, acoberzene phthalic acid, acoberzene phthalic acid, phthalic acid, acoberzene phthalic acid, acoberzene phthalic acid, iluorene phthalic acid, phthalic acid, cottic acid, cottic acid, phthalic acid, phthalic acid, cottic acid, iluorene phthalic acid, cottic acid, cottic acid, phthalic acid, dichlorobenzy naphthalene, phthalic acid, dichlorobenzy phthaline, N-ph pyrazine, 2-p phencoic acid, aci | 546 | decane, 1,10-dichloro | | phthalic acic buttane, meso- clofibrate, meso- clofibrate acid benzoic acid, phthalic acic benzoic acid, pyrazine, 3-n tributyrin (g dodecane, 1-benzoic acid, acobenzene benzoic acid, phthalic acid phthalic acid phthalic acid benzoic acid, control benzoic acid, benzoic acid, benzoic acid, benzoic acid, control benzoic acid, benzoic acid, control benzoic acid, dichlorobenzy phthalic acid benzoic acid, dichlorobenzy phthalic acid, benzanie, caid, aniline, N-ph pyrazine, 2-ph penzoic acid, phenol, 4-aced acid acid acid acid acid acid acid aci | 47 | fluorene | | butane, meso- clofibrate phthalic acid benzoic acid, phthalic acid penzoic acid, pributyrin (dodecane, 1-benzene, n-nc naphthalic acid penzoic acid, phthalic dichlorobenzy phthalic acid, phthalic acid, phthalic acid, dichlorobenzy phthalic acid, phenzoic | 48 | phthalic acid, diethyl ester | | clofibrate phthalic acic benzoic acid, phthalic acid, phrazine, 3-n tributyrin (g dodecane, 1-p benzene, n-n naphthalic acid, acoberzene benzoic acid, acoberzene phthalic acid, benzoic acid, benzoic acid, control phthalic acid benzoic acid, control phthalic acid benzoic acid, control phthalic acid benzoic acid, dichlorobenzy naphthalic acid benzoic acid, dichlorobenzy phthalic acid benzoic acid, dichlorobenzy naphthalic acid benzoic acid, dichlorobenzy phthalic acid benzoic acid, phenol, 4-ace dodecanoic acid phhenilic | 49 | butane, meso-1,2,3,4-tetrabromo | | phthalic
acid
penzoic acid,
phthalic acid,
phrazine, 3-n
tributyrin (g
dodecane, 1-b
dodecane, 1-b
benzene, n-n
naphthalic acid,
acetic acid,
phthalic acid,
phthalic acid,
phthalic acid,
phthalic acid,
phthalic acid,
iluorene
phthalic acid,
phthalic acid,
benzoquinone,
dichlorobenzy
naphthalene,
phthalic acid,
dichlorobenzy
naphthalene,
phthalic acid,
dichlorobenzy
phthalic acid,
dichlorobenzy
phthalic acid,
phthalic acid,
dichlorobenzy
phthalic acid,
phthalic acid,
dichlorobenzy
phthalic acid,
dichlorobenzy
phthalic acid,
dichlorobenzy
phthalic acid,
dichlorobenzy
phthalic acid,
dichlorobenzy
phthalic acid,
dichlorobenzy
phthalic acid,
dichlorobenzy
phthalic acid,
dichlorobenzy
phthalic acid,
phenol, 4-ace
dodecanoic acid,
phenol, 4-ace
dodecanoic acid
fluorene
propane, octa | 49 | clofibrate | | benzoic acid, phthalic acid, benzoic acid, pyrazine, 3-u tributyrin (g dodecane, 1-b benzene, n-n naphthalic acid, acetic acid, phthalic acid, phthalic acid, benzoic acid, control acid, phthalic acid, phthalic acid, benzoic acid, control acid, phthalic acid, phthalic acid, phthalic acid, phthalic acid, phthalic acid, dichlorobenzy phthalic acid, phthalic acid, dichlorobenzy phthalic acid, phrazine, 2-p phrazine, 2-p phrazine, 2-p phenzoic acid, phenzoi | 90 | phthalic acid, diethyl ester | | phthalic acid, penzoic acid, penzoic acid, penzoic, acid, dodecane, 1-benzene, n-nc azobenzene, acetic acid, penzoic acid, phthalic acid, phthalic acid, benzoic consphthalic acid benzoic acid, dichlorobenzy phthalic acid, dichlorobenzy phenzoic acid, phenzoic acid, phenzoic acid, phenzoic acid, phenol, 4-aced acid, phenol, 4-aced acid, phenol, 4-aced acid, phenol, acid, phenol, acid, phenol, acid, phenol, acid, phenol, acid, phenolic acid | 1551 | benzoic acid, hexyl ester | | perazine, 3-n tributyrin (g dodecane, 1-b benzene, 1-n benzene, 1-n benzene, n-n aphthalic acid, acobenzene benzoic acid, phthalic acid, benzoic acid, fluorene phthalic acid, benzoic acid, fluorene phthalic acid, dichlorobenzy naphthalic acid, dichlorobenzy naphthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, benzoic acid, dichlorobenzy phthalic acid, benzoic acid, honzamide, N, naphthalic acid, dichlorobenzy phthalic acid, phenol, 4-ace dodecanoic ac naphthalene, fluorene propane, octa | 51 | acid, | | pyrazine, 3-y tributyrin (g dodecane, 1-b benzene, n-ne naphthalene, acctic acid, acctic acid, phthalic acid phthalic acid, benzoic acid, benzoic acid, fluorene phthalic acid, benzoic acid, control acid, benzoic acid, denlorobenzy isobutanoic a tribulphide, dichlorobenzy phthalic acid, benzoic acid, dichlorobenzy phthalic benzoic acid, dichlorobenzy phthalic acid, phenol, 4-ace acid, phenol, 4-ace codecanoic ac naphthalene, fluorene propane, octa | | ris-3-hexenyl | | pyrazine, or
tributyrin (dodecane, 1-benzene, 1-benzene, 1-benzene, 1-benzene, acetic acid, azobenzene
benzoic acid, phthalic acid, benzoic consphthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy ctradecane, benzoic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthaline, N-phenzoic acid, phenol, 4-acedodecanoic aconaphthalene, fluorene propane, octa | 4 6 | DOBLICAC GLIM CID O MONORING FORCES OF CONTROL CONTR | | tributyfin (godecane, 1-benzene, n-ne naphthalene, tetradecane, acetic acid, acoberzene benzoic acid, phthalic acid, benzoic acid, fluorene phthalic acid, benzoquinone, dichlorobenzy naphthalic acid, phthalic acid, phthalic acid, dichlorobenzy naphthalene, phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, aichlorobenzy phthalic acid, aichlorobenzy phthalic acid, dichlorobenzy phthalic acid, aichlorobenzy phthaline, N-phenzanie, N, naphthalene, naphthalene, lluorene propane, octaphthalic acid dodecanoic ac naphthalic acid phthalic acid phenzanie, 2-phenzoic acid, phenol, 4-aced acid, phenol, 4-aced acid, phenol, 3-deptendent acid | 70 | $p_{X}(z_{1}, z_{2}, z_{3}) = (z_{2}, z_{3})$ | | accetane, n-nonaphthalene, tetradecane, accetic acid, accetic acid, phthalic acid, benzoic acid, benzoic acid, controlled acid, benzoic acid, controlled acid, benzoic acid, achlorobenzy isobutanoic attributable, benzoic acid, controlled acid, dichlorobenzy phthalic acid, benzoic acid, dichlorobenzy phthalic acid, aniline, N-ph pyrazine, 2-ph phrazine, 2-ph phrazine, acid, phenol, 4-acedocanoic a | 70 | tributyfin (gryyceryl tributyfate) | | penzene, n-nc naphthalene, tetradecane, acotic acid, acoberzene benzoic acid, phthalic acid benzoic acid, benzoic acid, fluorene phthalic acid benzoquinone, dichlorobenzy isobutanoic a trisulphide, dichlorobenzy phthalic acid benzoic acid, dichlorobenzy tetradecane, phthalic acid benzoic acid, dichlorobenzy phthalic acid benzoic acid, phenzoic acid, dichlorobenzy phthalic acid benzoic acid, dichlorobenzy phthalic acid benzamide, N, naphthalene, aniline, N-ph pyrazine, 2-ph pyrazine, 2-ph pyrazine, 2-ph phenzoic acid, phenol, 4-ace dodecanoic ac naphthalene, fluorene propane, octa | ٠
1 | dodecane, 1-Dromo | | naphthalene, tetradecane, acetic acid, acobnzene benzoic acid, phthalic acid benzoic acid, fluorene phthalic acid benzoquinone, dichlorobenzy naphthalene, phthalic acid benzoic acid, dichlorobenzy naphthalene, phthalic acid benzoic acid, dichlorobenzy phthalic acid benzoic acid, dichlorobenzy phthalic acid benzoic acid, phthalic acid benzoic acid, dichlorobenzy phthaline, N-ph pyrazine, N-ph pyrazine, 2-ph pyrazine, 2-ph pyrazine, 2-dy phenol, 4-ace dodecanoic acid, phenol, 4-ace dodecanoic acid, phenol, 4-ace popane, octa phthalic acid phenol, 4-ace propane, octa | 55 | benzene, n-nonyl | | tetradecane, acetic acid, acobenicae benzoic acid, phthalic acid pettalic acid, cotic acid, benzoic acid, fluorene phthalic acid, fluorene dichlorobenzy isobutanoic a trianlphide, dichlorobenzy phthalic acid, phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthaline, N-ph pyrazine, 2-ph pyrazine, 2-ph phenol, 4-ace dodecanoic acid naphthalene, fluorene propane, octa phthalic acid phenol, 4-ace dodecanoic acid phenol, 4-ace dodecanoic acid phenol, 3-acid phenolic acid phenolicaeila | 55 | naphthalene, 1-n-butyl | | acetic acid, acobergene benzoic acid, phthalic acid phthalic acid, benzoic acid, fluorene phthalic acid, fluorene phthalic acid benzoquinone, dichlorobenzy isobutanoic acid, dichlorobenzy phthalic acid benzoic acid, dichlorobenzy phthalic acid benzoic acid, dichlorobenzy phthalic acid benzoic acid, dichlorobenzy phthalic acid benzamide, N, naphthalie acid, phenol, 4-aced dodecanoic dodecano | 55 | | | azobenzene benzoic acid, phthalic acid phthalic acid, benzoic acid, benzoic acid, fluorene phthalic acid benzoquinone, dichlorobenzy isobutanoic atriaulphide, dichlorobenzy naphthalic acid phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, phenzoic acid, dichlorobenzy phthalic acid, dichlorobenzy phthaline, N-ph pyrazine, N-ph pyrazine, 2-ph pyrazine, 2-ph pyrazine, 2-ph pyrazine, 2-ph pyrazine, 2-ph phhalic acid, phenol, 4-ace dodecanoic ac naphthalene, fluorene propane, octa | 56 | | | benzoic acid, phthalic acid, acetic acid, benzoic acid, fluorene phthalic acid, fluorene phthalic acid, dichlorobenzy isobutanoic a trisulphide, dichlorobenzy naphthalene, phthalic acid benzoic acid, dichlorobenzy tetradecane, benzoic acid, dichlorobenzy thandine, N-ph phthalic acid benzoic acid, dichlorobenzy phthalic acid phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy phthaline, N-ph pyrazine, 2-ph pyrazine, 2-ph phenol, 4-ace dodecanoic ac naphthalene, fluorene propane, octa | 99 | azobenzene | | phthalic acic
phthalic acid,
acetic acid,
benzoic acid,
bhthalic acid
denzoquinone,
dichlorobenzy
isobutanoic a
triaulphide,
dichlorobenzy
phthalic acid
benzoic acid,
dichlorobenzy
tetradecane,
benzoic acid,
dichlorobenzy
phthalic acid,
dichlorobenzy
phthalic acid,
aidhlorobenzy
phthalic acid,
dichlorobenzy
phthalic acid,
dichlorobenzy
phthalene,
aniline, N-ph
pyrazine, 2-p
penzoic acid,
phenol, 4-ace
dodecanoic aci
naphthalene,
phenol, 4-ace
dodecanoic acid
phthalic acid
aniline, N-ph
pyrazine, 2-p
forzoic acid,
phenol, 4-ace
dodecanoic acid
luorene
propane, octa | 557 | -hydroxy, trimethylsilyl | | phthalic acid, benzoic acid, benzoic acid, fluorene phthalic acid, benzoquinone, dichlorobenzy isobutanoic acid, phthalic acid, dichlorobenzy phthalic acid, dichlorobenzy caradecane, benzoic acid, dichlorobenzy phthalic acid, benzamide, N, naphthalene, aniline, N-phyrazine, 2-ph pyrazine, 2-ph pyrazine, 2-ph phenol, 4-ace dodecanoic acid, phenol, 4-ace propane, octa phthalic acid, phenol, 4-ace dodecanoic acid, phenol, 4-ace propane, octa phthalic acid, phenol, 13-4, acid, phenolic acid, phenolic acid, phenolic acid, phenolic acid, ac | 59 | phthalic acid, diethyl ester | | dectic acid, benzoic acid, fluorene phthalic acid benzoquinone, dichlorobenzy naphthalic acid phthalic acid phthalic acid benzoic acid, dichlorobenzy tetradecane, benzoic acid, dichlorobenzy phthalic acid benzamide, N, naphthalene, aniline, N-phenzoic acid, phenol, 4-ace dodecanoic ac | 62 | phthalic acid, diethyl ester | | benzoic acid, fluorene phthalic acid benzoquinone, dichlorobenzy isobutanoic a trianlphide, dichlorobenzy phthalic acid benzoic acid, dichlorobenzy tetradecane, benzoic acid, dichlorobenzy phthalic acid benzanide, N-ph pyrazine, 2-p ponzazine, 2-p benzoic acid, aniline, N-ph pyrazine, 2-p
benzoic acid, phenol, 4-ace dodecanoic ac naphthalene, fluorene propane, octa | 90 | f | | fluorene phthalic acid, benzoquinone, dichlorobenzyl isobutanoic ac trisulphide, b dichlorobenzyl benzoic acid, dichlorobenzyl tetradecane, 3 benzoic acid, dichlorobenzyl phthalic acid, benzoic acid, dichlorobenzyl phthalic acid, benzamide, N,N naphthalene, 1 aniline, N-phe pyrazine, 2-pe benzoic acid, phenol, 4-acet dodecanoic acid naphthalene, 1 fluorene propane, octac phthalic acid, phenol, acid, | 9 | benzoic acid. 3-bydroxy. trimethylailyl derivativa | | phthalic acid, benzoquinone, dichlorobenzyl isobutanoic ac trisulphide, b dichlorobenzyl naphthalic acid, benzoic acid, citradecane, 3 benzoic acid, dichlorobenzyl phthalic acid, benzamide, N,N naphthaline, N-phe pyrazine, 2-pe benzoic acid, phenol, 4-acet dodecanoic acid, phenol, 4-acet dodecanoic acid, phenol, 4-acet dodecanoic acid, naphthalene, 1 fluorene | 2 9 | | | periodic periodic periodic periodic actrisulphide, being phthalic acid, benzoic acid, dichlorobenzyl benzoic acid, dichlorobenzyl benzoic acid, dichlorobenzyl phthalic acid, benzamide, N,N naphthalene, 1 aniline, N-phe pyrazine, 2-pe phrazine, 2-pe benzoic acid, phenol, 4-acet dodecanoic acid, phenol, 4-acet dodecanoic acid, phenol, 4-acet dodecanoic acid, phenol, cacid, phenol, acid, | 2 6 | | | penzoquinone, dichlorobenzyl isobutanoic act trisulphide, b dichlorobenzyl naphthalene, 2 phthalic acid, dichlorobenzyl tetradecane, 3 benzoic acid, benzamide, W,N naphthalic, N-phe pyrazine, 2-pe phenzoic acid, a | 2 (| | | dichlorobenzyl butyl ether, 2,4- isobutanoic acid, cinnamyl ester trisulphide, bis(2-chloroethyl) dichlorobenzyl butyl ether, 2,4- naphthalic acid, diethyl ester benzoic acid, diethyl ester dichlorobenzyl butyl ether, 2,4- tetradecane, 3,7,11-trimethyl benzoic acid, propyl ester, 4-hydi dichlorobenzyl butyl ester, phthalic acid, diethyl ester, phthalic acid, diethyl ester naphthalene, 1-nitro aniline, N-phenyl pyrazine, 2-pentyl pyrazine, 2-pentyl phenol, 4-acetyl dodecanoic acid, ethyl ester fluorene propane, octachloro fluorene propane, octachloro phthalic acid, diethyl ester naphthalene, 1-nitro fluorene | 79 | benzoquinone, 3-methoxy-b-nyaroxymethy1-1,4- | | trisulphide, bis(2-chloroethy1) dichlorobenzy1 buty1 ether, 2,4-naphthalene, 2-n-buty1 phthalic acid, diethy1 ester benzoic acid, hexy1 ester dichlorobenzy1 buty1 ester dichlorobenzy1 buty1 ester dichlorobenzy1 buty1 ester, 2,4-tetradecane, 3,7,11-trimethy1 benzoic acid, propy1 ester, 4-hydidichlorobenzy1 buty1 ester, 2,4-phthalic acid, diethy1 ester, phthalic acid, diethy1 ester naphthalene, 1-nitro aniline, N-pheny1 pyrazine, 2-penty1 perazine, 2-penty1 benzoic acid, 4-nitro, 2-propeny1 phenol, 4-acety1 dodecanoic acid, ethy1 ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethy1 ester naphthalic acid, diethy1 ester | 7.9 | dichiorobenzyl butyl ether, 2,4- | | trisulphide, bis (2-chloroethy1) dichlorobenzyl buty1 ether, 2,4- naphthalene, 2-n-buty1 ester phthalic acid, diethy1 ester dichlorobenzyl buty1 ether, 2,4- tetradecane, 3,7,11-trimethy1 benzoic acid, propyl ether, 2,4- phthalic acid, propyl ether, 2,4- phthalic acid, diethy1 ester benzamide, N.N-diethy1 methy1 ison naphthalene, 1-nitro aniline, 2-penty1 pyrazine, 2-penty1 phenol, 4-acety1 dodecanoic acid, ethy1 ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethy1 ester naphthalic acid, diethy1 ester | 7.9 | isobutanoic acid, cinnamyl ester | | dichlorobenzyl butyl ether, 2,4- naphthalene, 2-n-butyl phthalene, 2-n-butyl phthalic acid, diethyl ester dichlorobenzyl butyl ether, 2,4- tetradecane, 3,7,11-trimethyl benzoic acid, propyl ester, 4-hyd dichlorobenzyl butyl ester, 2,4- phthalic acid, diethyl ester benzamide, N,N-diethyl methyl ison naphthalene, 1-nitro aniline, N-phenyl pyrazine, 2-pentyl benzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester | 62 | trisulphide, bis(2-chloroethy1) | | naphthalene, 2-n-butyl phthalic acid, diethyl ester bench cacid, hexyl ester dichlorobenzyl butyl ether, 2,4-tetradecane, 3,7,11-trimethyl benzoic acid, propyl ester, 4-hydidichlorobenzyl butyl ester, 4-hydidichlorobenzyl butyl ester, 2,4-phthalic acid, diethyl ester benzamide, N,N-diethyl methyl ison naphthalene, 1-nitro aniline, N-phenyl pyrazine, 2-pentyl pyrazine, 2-pentyl benzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester naphthalic acid, diethyl ester naphthalic acid, diethyl ester naphthalic acid, diethyl ester naphthalic acid, diethyl ester | 63 | dichlorobenzyl butyl ether, 2,4- | | phthalic acid, diethyl ester benzoic acid, hexyl ester dichlorobenzyl butyl ester tetradecane, 3,7,11-timethyl benzoic acid, propyl ester, 2,4-dichlorobenzyl butyl ether, 2,4-phthalic acid, diethyl ester, 2,4-phthalene, N.N-diethyl methyl ison naphthalene, 1-nitro aniline, N-phenyl pyrazine, 2-pentyl benzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, ethyl ester naphthalene, 1-nitro | 64 | naphthalene, 2-n-butyl | | benzoic acid, hexyl ester dichlorobenzyl butyl ether, 2,4- tetradecane, 3,7,11-trimethyl benzoic acid, propyl ester, 4-hydi dichlorobenzyl butyl ester, 4,4- phthalic acid, diethyl ester benzamide, W.N-diethyl methyl ison naphthalene, 1-nitro aniline, N-phenyl pyrazine, 2-pentyl benzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester | 64 | phthalic acid, diethyl ester | | dichlorobenzyl butyl ether, 2,4- tetradecane, 3,7,11 trimethyl benzoic acid, propyl ester, 4-hydi dichlorobenzyl butyl ester, 2,4- phthalic acid, diethyl ester, 2,4- phthalic acid, diethyl ester, naphthalene, 1-nitro aniline, N-phenyl pyrazine, 2-pentyl pyrazine, 2-pentyl phenol, 4-acetyl dodecanoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester | 65 | benzoic acid, hexvl ester | | tetradecane, 3,7,11-trimethyl benzoic acid, propyl ester, 4-hyd dichlorobenzyl buryl ester, 2,4-phtalic acid, diethyl ester benzamide, N,N-diethyl methyl ison naphthalene, 1-nitro aniline, N-phenyl pyrazine, 2-pentyl perzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester rectangles acid, diethyl ester pertangles acid, diethyl ester pertangles acid, diethyl ester pertangles acid, diethyl ester acid, es | 65 | dichlorobenzyl butvl ether, 2.4- | | benzoic acid, propyl ester, 4-hydr
dichlorobenzyl butyl ether, 2,4-
phthalic acid, diethyl ester
benzamide, N.N-diethyl methyl ison
naphthalene, 1-nitro
aniline, N-phenyl
pyrazine, 2-pentyl
penzoic acid, 4-nitro, 2-propenyl
phenol, 4-acetyl
dodecanoic acid, ethyl ester
naphthalene, 1-nitro
fluorene
propane, octachloro
phthalic acid, diethyl ester | 99 | tetradecane, 3.7.11-trimethyl | | dichlorobenzyl butyl ether, 2,4- phthalic acid, diethyl ester benzamide, N.N-diethyl ester haphthalene, 1-nitro aniline, N-phenyl pyrazine, 2-pentyl benzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester | 67 | benzoic acid, propvi ester, 4-hydroxy | | phthalic acid, diethyl ester benzamide, N,N-diethyl ester naphthalene, 1-nitro aniline, N-phenyl pyrazine, 2-pentyl penzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester perpane, octachloro phthalic acid, diethyl ester | 67 | dichlorobenzyl butyl ather. 2.4- | | benzamide, N.N-diethyl methyl ison naphthalene, 1-nitro aniline, N-phenyl pyrazine, 2-pentyl benzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester pottanelic acid, diethyl ester contanel 3-dielle 2000 acid, diethyl ester | 68 | minimizer of district and distr | | nempthales, "," disciplation and the property of aniline, N-phenyl pyrazine, 2-pentyl benzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester retanalic acid, diethyl ester pottanalic acid, diethyl ester pertanalic acid, diethyl ester retanalic acid, diethyl ester retanalic acid, diethyl ester | | province N N-diothul mothul isomer | | aniline, 1-nicro aniline, 2-pentyl pyrazine, 2-pentyl pyrazine, 2-pentyl benzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester | 4 6 | Y METHY | | aniline, wpnenyl pyrazine, 2-pentyl benzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester | 5,5 | naphralene, I - nicro | | pyrazine, 2-pentyl benzoic acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester rent and 3-diel | 0 1 | aniline, N-phenyl | | benzolc acid, 4-nitro, 2-propenyl phenol, 4-acetyl dodecanoic acid, ethyl ester naphthalene, 1-nitro fluorene propane, octachloro phthalic acid, diethyl ester retrant 3-diel 2 4-trimethyl | 75 | , | | | 577 | 2-propenyl | | | 78 | | | | 79 | ethyl | | | 79 | naphthalene, 1-nitro | | | 30 | fluorene | | | 580 | propane, octachloro | | | : = | philipacid diathyl pater | | | 4 5 | ************************************** | page 45 STATIONARY PHASE SE-30 OV-1 DB-1 SE-30 OV-1 Me silicone OV-1 SE-30 OV-1 SE-30 OV-1 SE-30 OV-1 OV-1
SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 OV-1 SE-30 SE-30 SE-30 SE-30 SE-30 OV-1 OV-101 SE-30 OV-1 OV-101 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 OV-1 | STATIONARY
PHASE | SP-2100
OV-1 | SE-30
SE-30 | OV-1
SE-30 | SE-30 | OV-101 | OV-1 | 0V-1 | 0V-1
0V-1 | Me silicone | SP-2100 | OV-1
OV-1 | SE-30 | SE-30
SP-2100 | 0V-1 | 0V-1 | SE-30 | DB-1
SE-30 | OV-1 | DB-1
Me gilicopa | OV-101 | OV-101 | 0V-101 | OV-101 | OV-101
DB-1 | Me silicone | 0V-1 | Me silicone
OV-1 | 0V-1 | OV-1
DB-1 | OV-1/SE-30 | 0V-1 | Me silicone
OV-101 | SE-30
SE-30 | DB-1 | |------------------------------|---|---|---------------|---|--------|------|------|-------------------------|---|---------|--------------|-------|------------------|--|------|--|---------------|------|---------------------|--------|---|--------|--------|--|---------------|--|---|--------------|--|------------|------|---|----------------|--| | TENTION COMPOUND NAME LINDEX | pentane-1,3-diol, 2,2,4-trimethyl pentane-1,3-diol, 2,2,4-trimethyl | 583 fraces 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5. | | Denzoic acid, 4-nitro, 2-propynyl ester | | | | hydrazine, 1,2-diphenyl | phenol, 3,4,3-tildingly naphthalene, 2-methyl-1-nitro | | | | acetic acid, c | 96 hydrazine, 1,2-diphenyi
96 hydrazine, 1,2-diphenyl | | 97 acetic acid, 3-hydroxyphenyl, trimethylsilyl defivative
os acetic acid. 3-hydroxyphenyl, trimethylsilyl derivative | | | | | pyrazine, 2-ethylthio-3-methyl-5-(2-methybutyl) | | | 606 pyrazine, 2-phenylthio
608 acetanilide, 2-chloro-N-isopropyl (propachlor) | allobarbitone | 610 benzophenone
610 indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane) | 610 naphthalene, 2-nitro
611 sasid 4-tert-octv1-2-methyloydlohexyl ester | benzophenone | 614 phosphoric acid, tributyl ester
616 phosphoric acid, tributyl ester | | | 620 ether, dibenzyl
620 pyrazine, 5-isopropyl-3-methyl-2-phenoxy | | 623 ethane, 1,2-bis[(2-chloroethyl)thio] (Sesquimustard) | | RETENTION
INDEX | 158 | 158 | 158 | 158 | 156 | 158 | 158 | 126 | 156 | 155 | 155 | 156 | 155 | 15.0 | 155 | 155 | 155 | 15.0 | 120 | 1600 | 16(| 16(| 16(| 160 | 16(| 16] | 16 | 161 | 16. | 16] | 162 | 16: | 100 | 16. | INDEX 1623 1626 1624 629 phenanthrene, 9,10-dihydro STATIONARY PHASE SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 0V-1 0V-1 DB-1 DB-1 OV-1/SE-30 SE-30 SE-30 DB-1 0V-101 SE-30 OV-101 OV-1 DB-1 ov-101 OV-101 phosphoric acid, (E)-1-methyl-2-(methylcarbamoyl)vinyl, dimethyl ester (azodrin, monocrotophos) methanimidamide, N'-(4-chloro-2-methylphenyl)-N,N-dimethyl (fundal, chlordimeform) toluidine, alpha, alpha, alpha-trifluoro-2, 6-dinitro-N, N-dipropyl-p- (trifluralin) puenol, c,v-tamecuoxy---th-byt. cathonilic acid, m-chloro, isopropyl ester (chlorpropham) acetic acid, 4-hydroxyphenyl, trimethylsilyl derivative benzoic acid, 4-nitro, 1-methylpropyl ester phosphorothioic acid, 8-2-ethylthioethyl OO-dimethyl ester (demeton-S-methyl) acetic acid, 4-hydroxyphenyl, trimethylsilyl derivative acetic acid, m-chloro, isopropyl ester (chlorpropham) phosphorodithioic acid, o-ethyl s,s-dipropyl ester (mocap, ethopropham) tribromoacetic acid, cis-3-hexenyl ester propanoic acid, 3(4-methoxyphenyl), trimethylsilyl derivative naphthalic acid, diisopropyl ester phosphoric acid, diisopropyl ester phosphoric acid, 1,2-dibromo-2,2-dichloroethyl dimethyl ester (dibrom, naled) Figure 4, 6,8-trimethyl carbamic acid, 8-trimethyl N-cyclohexyl-N-ethylthio ester (roneet, cycloate) isophthalic acid, diethyl ester isophthalic acid, diethyl ester pyrazine, 3-methyl 5-(2-methyl) -2-(methylthio) terephthalic acid, diethyl ester pentadecane, 2,6,10-trimethyl pyruvic acid, 2-hydroxyphenyl lactone, trimethylsilyl derivative priazine, 2-ethylthio propanoic acid, 3(4-methoxyphenyl), trimethylsilyl derivative pyrazine, acid, diethyl ester benzoquinone, 2,5-di(1,1-dimethylpropyl)-1,4-benzoquinone, 2,5-di(1,1-dimethylpropyl)-1,4-benzoquinone, 2,5-di(1,1-dimethylpropyl)-1,4-cyclohexane, alpha-hexachloro (alpha-BHC) anisole, 2,3,4,5-tetrachloro sebacic acid, dimethyl ester benzoic acid, 4-nitro, 2-methylpropyl ester tribromoacetic acid, trans-3-hexenyl ester phenol, 2,6-dimethoxy-4-propyl cyclohexane, alpha-hexachloro (alpha-BHC) cyclohexane, hexachloro (BHC) oyrazine, 3-methyl-2-(phenylthio) dichlorobenzyl pentyl ether, 2,4terephthalic acid, diethyl ester adipic acid, dibutyl ester adipic acid, diisobutyl ester pentadecane, 3,7,11-trimethyl anisole, 2,3,4,5-tetrachloro citric acid, triethyl ester 4-bromophenyl phenyl benzoic acid, heptyl ester tridecane, 1-bromo naphthal, 2-nitro biphenyl, 2-nitro benzene, n-decyl pristane, normescaline ether, 658 658 658 659 1623 CP Sil 5CB SE-30 OV-1 ov-1 0V-1 SE-30 DB-1 SP-2100 OV-1 OV-1 SE-30 page 47 Me silicone OV-101 CP Sil 5CB Me silicone Me silicone OV-1 ov-1 00-1 anthracene, 9,10-dihydro benzene, hexachloro (HCB tetradecane, 1-chloro tetradecane, 1-chloro STATIONARY PHASE DB-1 CP Sil 5CB CP Sil 5CB SE-30 CP Sil 5CB SE-30 OV-101 phenanthrene, 1,2,3,4,5,6,7,8-octahydro pyrazine, 2-hexyl cyclohexane, beta-hexachloro (beta-BHC) dichlorobenzyl pentyl ether, 2,4- 663 1662 cyclohexane, beta-hexachloro (beta-BHC) tetradecane, 1-chloro phenacetin SE-30 DB-1 SE-30 Sil 5CB СЪ SE-30 SP-2100 CP Sil 5CB OV-1 Me silicone OV-1/SE-30 OV-1 OV-1 Me silicone OV-101 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 OV-1/SE-30 DB-1 0V-1 SE-30 SE-30 SE-30 SE-30 ov-1 00-1 - NO OV-101 00-1 SE-30 ov-1 ov-1 cyclohexane, gamma-ĥexachloro (gamma-BHC, lindane) sulphide, diheptyl benzidine benzidine cinnamic acid, benzyl ester benzene, hexachloro (HCB) dibenzofuran, 2-chloro benzene, hexaethyl salicylic acid, hexyl ester carbamic acid, 2-chloroallyldiethyldithio (CDEC) anisole, pentachloro benzoic acid, 3,5-dinitro, methyl ester cinnamic acid, 3-hydroxy, methyl ester cyclohexane, alpha-hexachloro (alpha-BHC) anisole, pentachloro paracetamol page 48 OV-1/SE-30 SP-2100 CP Sil 5CB SE-30 ov - 101 Me silicone Me silicone ov-1 00-1 STATIONARY PHASE SE-30 Me silicone 00-1 Me silicone SE-30 SE-30 SE-30 OV-1 SE-30 OV-101 DB-1 DB-1 SE-30 SE-30 OV-1 oV-1 0V-1 OV-1 DB-1 DB-1 00-1 Me silicone SE-30 00-1 DB-1 00-1 00-1 OV-1 OV-1 OV-1/SE-30 0V-1 00-1 OV-1 Me silicone SE-30 Me silicone OV-1/SE-30 OV-1/SE-30 07-1 DB-1 SE-30 DB-1 0V-1 page 49 | z | | |---|---| | ð | | | H | 1 | | 텆 | 1 | | z | 1 | | | | | COMPOUND NAME | | |---------------|--| | | | | | | | | | benzoic acid, 4-nitro, 1-methylbutyl ester triazine-2,4-diamine, 2-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5- (atrazine) phosphorodithioic acid, 00-dimethyl S-[2-(methylamino)-2-oxoethyl] ester (dimethoate) benzo(b)naphtho(2,1-d)-thiophene cyclohexane, gamma-hexachloro (gamma-BHG, lindane) acetic acid, 2,5-dihydroxyphenyl lactone, trimethylsilyl derivative citric acid, acetyltriethyl ester dodecanoic acid, (lauric acid) phosphorodithioic acid, (OO-dimethyl S-[2-(methylamino)-2-oxoethyl] ester (dimethoate) phosphorodithioic acid, 00-dimethyl S-[2-(methylamino)-2-oxoethyl] ester (dimethoate) decane, 1,10-dibromo triazine-2,4-diamine, 6-chloro-N,N'-bis(1-methylethyl)-1,3,5- (propazine) benzoic acid, 4-nitro, 2-chloroethyl ester phosphonodithioic acid, o-ethyl s-phenyl ethyl ester (dyfonate, fonofos) acetic acid, methyl ester, 2,4,5-trichlorophenoxy (2,4,5-T methyl ester) amine, tri-n-hexyl Interpretable of the control phosphoric acid, tris(2-chloroethyl) ester propanoic acid, 2-(4-chloro-2-methylphenoxy) (mecoprop) benzoic acid, 2,3-dihydroxy, trimethylsilyl derivative cyclohexane, gamma-hexachloro (gamma-BHC, lindane) sebacic acid, diethyl ester cyclohexane, beta-hexachloro (beta-BHC) methyl parathion oxygen analog benzene, n-butyl, sulphonamide acenaphthylene-1-carbonitrile hexadecane, 2,6,10-trimethyl benzoic acid, benzyl ester dibenz (b, f) (1, 4) oxazepine phenol, pentachloro phenol, pentachloro pentobarbitone normeperidine phenanthrene phenanthrene amobarbitone anthracene anthracene caffeine 1749 1750 1750 1750 1751 1751 1752 1752 1753 1753 749 Me silicone Me silicone DB-1 DB-1 OV1-1/SE-54 Me silicone SE-30 Me silicone SE-30 Me silicone DB-1 Me silicone OV-1/SE-30 Me silicone OV1-1/SE-54 DB-1 OV-1/SE-30 Me silicone Me silicone Me silicone STATIONARY OV-1/SE-30 OV-1/SE-30 PHASE OV-1 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 00-1 DB-1 0V-1 OV-1 OV-1 0V-1 DB-1 0V-1 00-1 OV-1 page 50 benzoic acid, 4-hydroxy-3-methoxy, trimethylsilyl derivative propanoic acid, 3-(4-hydroxyphenyl), trimethylsilyl derivative cinnamic acid, 2-methoxy, trimethylsilyl derivative phenol, pentachloro propanoic acid, 3-(4-hydroxyphenyl), trimethylsilyl derivative hexadecane, 3,7,11-trimethyl ryptamine cedrenyl acetate anthracene STATIONARY Me silicone OV-1/SE-30 OV-1/SE-30 CP Sil 5CB OV-1 PHASE OV-101 OV-101 OV-101 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 SE-30 00-1 OV-1 0V-1 0V-1 DB-1 0V-1 ov-1 DB-1 OV-1 00-1 ov-1 DB-1 OV-1 0V-1 Me silicone SE-30 CP Sil 5CB SE-30 SE-30 Me silicone OV-1 CP Sil 5CB CP Sil 5CB OV-1/SE-30 SE-30 SE-30 carbazole | z | | |------|---| | 0 | | | Н | > | | ₽ | Ē | | z | C | | ы | 1 | | H | ř | | RETE | | | ~ | | STATIONARY PHASE | STENTION | COMPOUND
NAME | |----------|---| | | | | 1785 | benzoic acid, 2,5-dihydroxy, trimethylsilyl derivative | | 1785 | benzoic acid, 3,5-dinitro, methylethyl ester | | 1786 | biphenyl, 3-nitro | | 1786 | phenanthrene | | 1707 | sacobaintennitrile. 2.4.5.6-tetrachloro-1,3- (chlorothalonil, Bravo) | | 1788 | Janine, N-acetylphenyl, trimethylsilyl derivative | | 1789 | acridine | | 1790 | | | 1791 | benzoic acid, 4-nitro, 4-pentenyl ester | | 1791 | phenanthrene | | 1794 | mandelic acid, 4-hydroxy, trimethylallyl derivetive | | 1795 | lactic acid, beta-(4-methoxyphenyl), trimethylallyl derivative-9 (desmetryne) | | 1795 | | | 1796 | Ginnamic actd, 4-methoxy, trimenity1siyt uctivative | | 1.67.1 | cyclohokszne, gamma-hexacuto. (gamma-hex., rindin.). 1 | | 1799 | Lactic actu, Deca (1 memory). | | 1800 | Accentains acid. 2-hvdroxv, trimethylsilyl derivative | | 1800 | octadecane | | 1800 | phenol, 2-sec-buty1-4,6-dinitro (premerge) | | 1800 | | | 1800 | Pyrimidinedione, 3-chloro-3-(1,1-dimethylethyl)-6-methyl-2,4(1H,3H)- (terbacil) | | 1802 | hippuric acic, trimethyleilyl derivative | | 1802 | phenol, 2-sec-butyl-4,6-dinitro (dinoseb) | | 1803 | benzoic acid, 4-nitro, pentyl ester | | 1803 | cinnamic acid, 4-methoxy, trimethyleillyl derivative | | 1804 | benzoic acid, 4-hydroxy-3-ethoxy, trimetny181111 defryactive | | 1805 | acetic acid, isobutyl ester, 2,4-dichiolophenoxy (2,4-b isobutyl ester) | | 1806 | benzphetamine | | 1806 | | | 1806 | pyrazine, 5-18opropy1-3-metny1-2-(pneny1cuio) | | 1007 | CalDacors
 | | 1808 | pyrazine, Juneili-J (* meliji-Ducji) = pomoli
himbonyl 3-nitro | | 1810 | | | 1811 | phytane | | 1812 | acetic acid, 3,4,5-trimethoxyphenyl, trimethylsilyl derivative | | 1812 | phytane
 | | 1014 | | | 1816 | | | 1816 | carbamic acid, 2-dimethylamino -5,6-dimethylpyrimidin-4-yl dimethyl ester (pirimicarb) | | 1816 | propionanilide, 3',4'-dichloro (propanil) | | 1817 | cyclohexane, delta-hexachloro (delta-BHC) | | 1818 | biphenyl, 2,4',5-trichloro (PCB 31) | | 1818 | Diphenyl, 2/4/4 "Circlioto (FCD 20)
Extract and A.L.A.chloro-2-methulphenoxy) (MCPR) | | 1823 | 2.4-dihydroxy, trimethylsilyl | | 1823 | ethoheptazine | | 1825 | | | 1826 | benzoic acid, 4-nitro, 2,2-dichloroethyl ester | | 1826 | phthalic acid, dilaboutyl ester | | > 2 > 1 | | 0V-1. SE-30 Me silicone OV-1/SE-30 Me silicone DB-1 OV-1 SE-30 STATIONARY PHASE page 53 5CB Sil OV-1/SE-30 SE-30 CP Sil 5CB Me silicone SE-30 Me silicone OV-1 OV-1 CP Sil 5CB Me silicone Me silicone OV-1 DB-1 SE-30 Me silicone OV-1 CP Sil 5CB OV-1 STATIONARY Me silicone OV1-1/SE-54 SE-30 OV-1/SE-30 OV-1/SE-30 2CB ov-1/sE-30 OV-1 CP Sil 5CB CP Sil 5CB PHASE CP Sil SE-30 OV-101 OV-101 SE-30 DB-1 DB-1 SE-30 OV-1 OV-1 OV-1 DB-1 DB-1 oV-1 DB-1 DB-1 OV-1 ov-1 00-1 ov-1 OV-1 page 54 biphenyl, 2,2',3,5'-tetrachloro (PCB 44) phosphorothioic acid, 0,2-diethylamino-6-methylpyrimidin-4-yl 0,0-dimethyl ester (pirimiphos-methyl) phosphorodithioic acid, 00-dimethyl S-1,2-dicarbethoxyethyl ester (malathion) triazine-2,4-diamine, N-(1,1-dimethylethyl)-N'-ethyl-6-(methylthio)-1,3,5-, (terbutryne) phosphorothioic acid, OO-diethyl O-4-nitrophenyl ester (parathion) urea, 1,1-dimethyl-3-(perhydro-4,7-methanoinden-5-yl) (norucon, norea, Herban) phosphoramidothioic acid, o-2,4-dichlorophenyl o-methyl isopropyl ester (zytron) phosphorothioic acid, O-diethyl O-4-nitrophenyl ester (parathion) phosphorothioic acid, pentyl propyl ester naphthalene, 1,2,3,4,10,10-hexachloro-1,4,4,5,8,8-hexahydro-exo-1,4-endo-5,8-dimethano (aldrin) fentrothion lactic acid, beta-(4-hydroxyphenyl), trimethylsilyl derivative naphthalene, 1,2,3,4,10,10-hexachloro-1,4,4,5,8,8-hexahydro-exo-1,4-endo-5,8-dimethano (aldrin) triazine-2,4-diamine, N-(1,1-dimethylethyl)-N'-ethyl-6-(methylthio)-1,3,5-, (terbutryne) phosphorodithioic acid, OO-dimethyl S-1,2-dicarbethoxyethyl ester (malathion) indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane) phenyramidol phthalic acid, dibutyl ester indention of 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane) phthalic acid, dibutyl ester phosphorodithioic acid, 00-dimethyl S-1,2-dicarbethoxyethyl ester (malathion) phosphorodithioic acid, 00-dimethyl S-1,2-dicarbethoxyethyl ester (malathion) phosphorodithioic acid, 00-dimethyl S-1,2-dicarbethoxyethyl ester (malathion) phosphorothioic acid, 00-dimethyl 0-4-nitrophenyl ester (parathion-methyl) phosphorothioic acid, 00-diethyl 0-4-nitrophenyl ester (parathion) acetic acid, butyl ester, 2,4-dichlorophenoxy (2,4-D butyl ester) urea, 3-(3,4-dichlorophenyl)-1-methyoxy-1-methyl (linuron) cinnamic acid, 4-hydroxy, trimethylsilyl derivative phthalic acid, dibutyl ester phthalic acid, diisobutyl ester benzoic acid, 3,5-dinitro, 3-butenyl ester carbamic acid, 3-4-chlorobenzyl diethylthio ester (benthiocarb) lactic acid, beta-(4-hydroxyphenyl), trimethylsilyl derivative carbamic acid, 4-methylthio-3,5-xylyl methyl ester (mesurol) benzoic acid, 4-nitro, hexyl ester hexadecanoic acid, methyl ester (methyl palmitate) hexadecanoic acid, methyl ester (methyl palmitate) acetic acid, 3-indolyl, trimethylsilyl derivative oyrazine, 2-methyl-5-(2-methylbutyl)-3-octyl ethane, 1,1'-oxybis[2-((2-chloroethyl)thio)] adipic acid, di (ethoxyethyl) ester phthalic acid, dibutyl ester phthalic acid, dibutyl ester phthalic acid, dibutyl ester benzothiazole, 2-mercapto parathion oxygen analog naphthalene, 2-phenyl picloram (methylated) phenyltoloxamine anthraquinone fenitrothion orphenadrine 1910 1911 1911 1911 1913 1915 1915 1916 1919 1919 1920 1922 1923 1924 1924 1927 1929 1930 1931 1933 1935 937 938 938 939 940 9061 937 906 Me silicone OV-1 Me silicone OV-1/SE-30 CP Sil 5CB SE-30 OV-1 SE-30 SE-30 DB-1 OV-101 OV-1/SE-30 0V-1 Me silicone SE-30 SE-30 00-1 07-1 OV-1/SE-30 Me silicone CP Sil 5CB SE-30 DB-1 DB-1 STATIONARY PHASE OV-1 Me silicone Me silicone SE-30 0V-1 0V-1 Me silicone DB-1 Me silicone OV-1 OV-1 Me silicone OV-101 OV-101 55 page anthrone de silicone OV-1/SE-30 07-1 SE-30 ov-101 DB-1 OV-1/SE-30 OV-1/SE-30 | z | | |-----|---| | 2 | > | | H | è | | E. | Ž | | RET | - | | ~ | | STATIONARY PHASE | RETENTION
INDEX | COMPOUND NAME | |--------------------|--| | | | | 1945 | c acid, | | 1945 | hexadecanoic acid, (palmitic acid) | | 1946 | dodecane, 1,12-dibrome (aldrin) | | 1946 | naphthalene, 1,2,5,4,10,10,0000010-1,4,7,0,0,000000000000000000000000000000 | | 1946 | propanola acid, -ainydroxypinniyi, -inmerniyisiri-acii | | | tringlennamine | | | r
naphthalene, 1,2,3,4,10,10-hexachloro-1,4,4,5,8,8-hexahydro-exo-1,4-endo-5,8-dimethano (aldrin) | | | phenanthrene, 9-chloro | | | phthalic acid, butyl isodecyl ester | | 1950 | pyruvic acid, 2-methoxyphenyl, trimethylsilyl derivative | | 1951 | triazine, 2-chloro-4-(1-cyano-1-methylethylamino)-6-ethylamino-1,3,5~ (cyanazine, Bladex, Fortrol) | | 1952 | methapyrilene | | 1953 | benzoic acid, 3,5-dinitro, 1,2-dimethylpropyl ester | | 1953 | phosphorothioic acid, CO-diethyl O-4-nitrophenyl ester (parathion-ernyl) | | 1954 | pyruvic acid, 2-methoxyphenyl, trimethylally delivative. I -mathano-1H- (1-hvdroxveh)ordena) | | 1955 | T-nyaroxy"3a, 1, 1, 1a tectanyaro 1, 1 mocmano 1 | | 1955 | phthalic acid, cintyl ester | | 1957 | benzolg acid, 3,3-ainitto, butyr ester | | 1661 | phenographics | | 7000 | Bubracine oxygen enaire
kantakin and 3 A-dinite | | 0001 | · First and | | 1930 | inspiratoring dimethyl setor 2 % 6-tetrarhloro (OCPA) | | 1960 | | | 1961 | phosphorocranic actd, vo-matering of a martiplicity actor. Performance of a martiplicity martipli | | 7967 | Denzole acid, 3,3 denitud, i menit - acidit ac | | 1967 | pyrazine, z-metnyi-o-(z-metnyi-o-(z-metnyi-o-o-yi- | | 7967 | Theory is a superior of the su | | 5057 | | | 1964 | | | 1962 | benzoic acia, decyi ester | | 1965 | diphenylamine, Z-nicro | | 000 | prosportunities and to contain the containing to contain the containing conta | |
1967
1969 | phthalic acid, alburgh tester but hitel 20th procedured mather derinformate Ruslane) | | 1200 | | | 1001 | dibersolutum, bantto | | 1,000 | Dexacecate, 1-Drotto
1:3-1 | | 1968 | Indeed, 1,4,7,0,7,0,0 neprenince of 1,7,7,0 committee 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | | 0.00 | dictionalist control of a control of the | | 1971 | benzoic acid, 3,5-dinitro, 1-methylbutyl ester | | 1971 | bicyclohexyl, 4-phenyl | | 1971 | phosphorothioic acid, O-(4-bromo-2,5-dichlorophenyl) OO-dimethyl ester, (bromophos) | | 1971 | propancic acid, beta-(3-indoly1), trimethylsily1 derivative | | 1972 | | | 1972 | dichlorobenzyl octyl ether, 2,4- | | 1972 | isobut | | 1973 | amine, tri-n-heptyl | | 1973 | cyclobarbitone | | 1973 | hexadeanolo acid, (paimitic acid) | | 19/0 | dichiocomisty octyl cines, 4,4
aichiocomisty octyl chartachloro-2.3-enoxy-3a.4.7.7a-tetrahydro-4.7-methano-1H- (heptachlor epoxide) | | 1976 | ne de la companya | | 1978 | phosphoretrinic acid, O-(4-bromo-2,5-dichlorophenyl) OO-dimethyl ester, (bromophos) | | | | 0V-1 0V-1 We silicone VV-1 SE-30 OV-1 SE-30 OV-1 SE-30 SE-30 SE-30 OV-1/SE-30 SE-30 OV-101 Me silicone SE-30 SE-30 OV-1/SE-54 DB-1 Me silicone SE-30 SE-30 OV-1 SE-30 OV-1 SE-30 SE-30 OV-1 SE-30 OV-1 SE-30 SE-30 OV-1 Ne silicone SE-30 OV-1 Ne silicone OV-1 Ne silicone OV-1 Ne silicone OV-1 SE-30 SE-30 SE-30 OV-1 Ne silicone OV-1 SE-30 SE-30 SE-30 SE-30 OV-1 Ne silicone OV-1 SE-30 OV-1 SE-30 OV-1 | ETENTION | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |-----------------|---| | STATIONARY
PHASE | GE-30 | 00 - 30
00 - 30 | Me door | 01-1 | OV-1 | 0,1-101 | CP Sil 5CB | • | | SE-30 | Me silicone | OV-101 | CP Sil 5CB | OV-1 | 0V-1 | Me silicone | 000-100 | OV-1 | Me ailicone | SE-30 | Me silicone | 0V-1 | OV-1 | | CP Sil 5CB | 1 - AO | 1: AO | OV-1 | 0V-1 | OV-1 | | (e) OV-1 | ester (supracide) DB-1
SE-30 | SE-30 | | | 06-130 | CP Sil 5CR | | OV-1/SE-30 | 00-1 | Me silicone | OV-101 | SE-30 | 00-1 | Me silicone | SE-30 | 000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000-1313
000 | |---------------------|-------|--------------------|-----------------------|------|-------------------------------------|---------|--------------------------------|-----------------|--------------|--------|-----------------------------------|-----------------------------------|--|------|---|--|---|--------------------------------|---|---|-------------------------------------|------------|--|--|--|---|-----------|---|--|--|------|---|---------------------------------|--|-------------|---|---|-------------------------------------|---|--------------------------------------|--|-------------|---------------|--------------------------------|---|-------------|---
---| | | | | noic acid, ethyl este | œ, | phthalic acid, dimethoxyethyl ester | | hexadecanoic acid, ethyl ester | chlorodane, oky | chlorpyrifos | pyrene | octadecane, 2,6,10,14 retrametny. | phenanturene, J. outmenturent
 | pyrazine, z meriyi v (z meriyi projet) v v 1. kinkarine, z meriyi v (PCB 70) | | indene. 1, 2, 4, 5, 6, 7, 8, 8-octachloro-2, 3, 3a, 4, 7, 7a-hexahydro-4, 7-methano-1H- (chlordane) | phosphorothioic acid, OO-diethyl O-4-nitrophenyl ester (parathion) | cinnamic acid, 3,5-dimethoxy, trimethylsilyl derivative | benzophenone, 2-amino-5-chloro | carboxylic acid, 3-indolyl, trimethylsilyl derivative | phenobarbitone phenoparbituh derivative | acid, 5,4-dimediony, diimediyibiryi | t election | natudu
janindole-1.3(2H)-dione, 3a,4,7,7a-tetrahydro-2-[(trichloromethyl)thio]-1H- (captan) | pyruvic acid, 3-hydroxyphenyl, trimethylsilyl derivative | biphenyl, 2,2',3,5',6-pentachloro (PCB 95) | hydracrylic acid, beta-(3-hydroxy-4-methoxyphenyl), trimethylsilyl derivative | norharman | naphthalene, 1,2,3,4,10,10-mexacilicor1,4,4,5,0,0 instally to one 1,1 close 1,5 | alanine, N-accety-4-metroxypheny, trimecrity still certweets ***Listanto*** | triazine-z-amine, 4,6-dichloro-N-(2-chlorophenyl)-1,3,5- (anilazine) | | indane, 1,4,5,6,7,8,8-heptachloro-2,3-epoxy-3a,4,7,7a-tetrahydro-4,7-methano-1H- (heptachlor epoxide) | o,o-dimethyi | Denzola acid, 3,7-dinitro, 2-cniologoculy asset
hanvia acid, 3,7-dinitro, 2-methylbutyl ester | (heptachlor | indane, 1,4,5,6,7,8,8-heptachloro-2,3-epoxy-3a,4,7,7a-tetrahydro-4,7-methano-1H- (heptachlor epoxide) | isoindole-1,3(2H)-dione, 2-[(trichloromethyl)thio]-1H- (folpet) | benzoic acid, 4-nitro, heptyl ester | cniordane, gamma"
;soindole-1,3(2H)-dione, 3a,4,7,7a-tetrahydro-2-[(trichloromethy1)thio]-1H- (captan) | nonadecane, 2, 6, 10, 14-tetramethyl | pyrnvic acid, 2,5-dihydroxyphenyl lactone, trimethylsilyl derivative | | acid, dibutyl | isophhalic acid, dibutyl ester | , beta-(4-hydroxy-3-methoxyphenyl), trimethylsilyl derivative | | <pre>influoranthene influoranthene influoranthene</pre> | | | RETENTION
INDEX | | 1978 | 1979 | 1980 | 1980 | 1980 | 1981 | 1982 | 1982 | 1983 | 1984 | 1984 | 1983 | 1989 | 1989 | 1989 | 1994 | 1995 | 1995 | 1995 | 8881 | 2000 | 2000 | 2000 | 2003 | 2004 | 2002 | 2008 | 2009 | 2010 | 2010 | 2012 | 2012 | 2014 | 2015 | 2015 | 2015 | 2016 | 2018 | 2020 | 2021 | 2023 | 2025 | 2025 | 2027 | 2027 | 2030 | 2030 | | NION | 100 | |-------|-------| | RETEN | TAYAL | | TENTION | | |---------|---------------| | TNDEX | COMPOUND NAME | | | | | | | STATIONARY pyruvic acid, 4-hydroxyphenyl, trimethylsilyl derivative pyruvic acid, 4-hydroxyphenyl, trimethylsilyl derivative indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane) pyrazine, 3-methyl-5-(2-methylpentyl)-2-(phenylthio) terephthalic acid, dibutyl ester indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane) indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane) biphenyl, 2,2'4,5,5'-pentachloro (PCB 101) biphenyl, 2,2'4,5,5'-pentachloro (PCB 101) biphenyl, 2,2'4,5,5'-chloro-1-(2,4-dichlorophenyl)vinyl diethyl ester (chlorfenvinphos) propanoic acid, 2-chloro-1-(2,4-dichlorophenyl), trimethylsilyl derivative benzoic acid, 3,5-dinitro, 4-pentenyl ester cinnamic acid, 3-hydroxy-4-methoxy, trimethylsilyl derivative (endosniphan) 5 glutamine, phenylacetyl, trimethylsilyl derivative ethene, 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) (o,p'-DDE) ethene, 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) (o,p'-DDE) glutamic acid, phenylacetyl, trimethylsilyl derivative norbornene-2,3-dimethanol, 1,4,5,6,7,7-hexachloro, cyclic sulphite, phosphorothioic acid, OO-diethyl O-4-nitrophenyl ester (parathion) hippuric acid, 2-hydroxy, trimethylsilyl derivative dithiocarbonate, s,s-(6-methylquinoxaline-2,3-diyl) (morestan) terephthalic acid, dibutyl ester disyston sulfone chlordane, alpha-oxazole, 2,5-diphenyl (PPO) pyruvic acid, 4-hydroxyphenyl, trimethylsilyl derivative cinnamic acid, cinnamyl ester dichlorobenzyl nonyl ether, 2,4-glutamic acid, phenylacetyl, trimethylsilyl derivative benzoic acid, 3,5-dinitro, pentyl ester terephthalic acid, dibutyl ester benzophenone, 2-amino-5-chloro benzophenone, 2-amino-5-chloro benzoic acid, undecyl ester biphenyl, 2,2-dinitro triphenylamine benzacenaphthylene nonachlor, trans brompheniramine carbinoxamine procaine 2039 SE-30 SE-30 CP Sil 5CB Me silicone OV-1 SE-30 Me silicone Me silicone OV-1 SE-30 SE-30 CP Sil 5CB Me silicone CP Sil 5CB silicone Me silicone Me silicone Me silicone Sil 5CB Sil 5CB Sil 5CB OV-1/SE-30 CP Sil 5CB PHASE Sil OV-101 ov-101 SE-30 DB-1 DB-1 00-1 00-1 0V-1 00-1 ov-1 ov-1 OV-1 0V-1 0V-1 page 58 indene, 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methano-1H- (chlordane) dichlorobenzyl nonyl ether, 2,4- isoindole-1,3(2H)-dione, 2-[(trichloromethyl)thio]-1H- (folpet) cinnamic acid, 4-hydroxy-3-methoxy, trimethylsilyl derivative dichlorobenzyl nonyl ether, 2,4- nonadecane, 2,6,10,14-tetramethyl heptadecane, 1-bromo diphenylpyralamine 2072 2073 2073 2073 2076 ethene, 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) (o,p'-DDE) dichlorobenzyl nonyl ether, 2,4- 5CB | STATIONARY
PHASE | OV-1/SE-30
OV-1 | SE-30
SE-30 | OV-1
OV-1 | Me silicone | DB-1
OV-1 | 0V-1 | 0V-1
0V-1 | 0V-1 | 0V~1
0V-1 | DB-1 | 30 | CP Sil 5CB | Sil | | SE-30 | SE-30
Me ailione | SE-30 | 0V-1 | Me silicone | SE-30
Me ailicope | ov-1 | ov-1 | DB-1
cr-30 | SE-30
OV-1/SE-30 | SE-30 | OV-101 | SE-30 | Ne stricone
OV-1/SE-30 | ov-1 | SE-30 | OV-1/SE-30
SE-30 | CP Sil 5CB | | Me silicone | | OV-1 | CP Sil 5CB | 6 | SE-30
Me silicone | | |------------------------------|--|----------------|--------------|-------------|--------------|--|--|---|----------------------------|-----------|------|------------|---|-------------------|------------------------------|------------------------------------|-------|------|-------------|--|---|------|-------------------------------|---------------------|-------------------------------|-----------------|-----------|---------------------------|------------------------------|-------|--|------------------------------|--|--|--|------------------------------|--
---|---|--| | COMPOUND NAME COMPOUND NAME | diphenylamine, 2-amino-5-chloro hippuric acid, 4-methoxy, trimethyle | cinnamic acid, | _ | | | acetic acid, methyl ester, 2,2-bis(4-chlorophenyl) | barbituric acid, 5-ethyl-5-(4-methylphenyl)
karadigasthishin 3-oyida 6 7 8 9 10 10-hexachlorol.5.5a.6.9.9a-hexabydro-6.9-methano-2.4.3- (endosulfan | benzodioxathiepin 3-oxide, 6,7,8,9,10,10-hexachlorol,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3- | norbornene-2,3-dimethanol, | thiodan 1 | | | 8 biphenyl, 2,2',3,4,3' -pentachioro (FCB 0);
8 naphthalene, 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-exo-1,4:5,8-dimethano (dieldrin) | sulphide, dinonyl | phosphorodithioic acid, S-((| 6 cinnamic acid, phenylethyl ester | | | | 8 octadecanoic acid, metnyl ester, (metnyl stearate) | nemercosame
naphthalene, 1,2,3,4,10,10-h | | propionamide, (RS)-N, N-dieth | tluorene, Z-nii | benzoic acid, 3,5-dinitro, 2, | pyrazine, 2-phe | pipradrol | | lactic acid, beta-(3-indoly1 | | naphthalene, 1,2,3,4,10,10-nexachioro'', '''epoxy'', ''',''','','',''',''',''',''',''',' | ethene, 1,1-dichloro-2,2-bis | octadecanoic acid, methyl ester, (methyl stearate) | phosphoric acid, 2-chloro-1-
henzophenone, 2-methylamino- | butenedioc acid, disextyl ester, cis- (disextyl maleate) | indene, 1,2,4,5,6,7,8,8-octa | octadecanoic acid, metnyi es
ethane, 2-(2-chlorophenyl)-2 | 9 carbamic acid, 4-chlorobut-2-ynyl 3-chlorophenyl ester (barban) | cinnamic acid, 3,4,3-timed
fluorene, 2-nitro | | | RETENTION
INDEX | 2078 | 2080 | 2080 | 2084 | 2084 | 208 | 208 | 2086 | 2086 | 2087 | 2088 | 2088 | 2088 | 2091 | 2092 | 2096 | 7602 | 2097 | 2098 | 2098 | 2100 | 2100 | 2100 | 210 | 2104 | 2104 | 210 | 2107 | 2107 | 2109 | 211 | 211 | 211 | 211 | 211 | 211 | 211 | 2119 | 212 | | | STATIONARY
PHASE | OV-1
OV-101
SE-30 | SE-30
CP Sil 5CB
OV-101 | OV-101
SE-30
SE-30 | SE-30
SE-30 | OV-1/SE-30
DB-1
OV-1/SE-30 | 0V-1
0V-1 | OV-1
SE-30
OV-1 | OV-1
SE-30 | OV-1
OV-1/SE-30 | 0V-1
0V-1 | OV-1/SE-30
OV-1 | OV-1
SE-30 | DB-1
SE-30 | OV-1 | 0V-1 | SE-30
SE-30 | CP Sil 5CB | OV-1/SE-30 | SE-30
OV-1 | Me silicone | 0V-1 | SE-30
OV-1 | OV-1
SE-30 | SE-30
DB-1
OV-1 | DB-1 | SE-30 | |---------------------|--|---|--------------------------|----------------------|----------------------------------|--|---|---|--------------------|--|--------------------|------------------------------------|---|--------------------------|---|----------------|--|------------|--|-------------|------------------------|--|--|---|---------|-------------------------| | | | (endrin) | | | | | | | | (dieldrin) | (dieldrin) | | | | | | | | | | | | | | | | | COMPOUND NAME | hippuric acid, 3-hydroxy, trimethylsilyl derivative
phthalic acid, dipentyl ester
benzoic acid, 4-nitro, octyl ester | 2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-exo-1,4:5,8-dimethano dipentyl ester | | | cinnamic acid, phenylethyl ester | phthalic acid, alpunyly escapt
tyrosine, N-acetyl, trimethylailyl derivative
ethane, 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) (o,p'-TDE) | ethene, 1,1-dichloro-2,2-bis(4-chlorophenyl) (p,p'-DDE) pyruvic acid, 3,4-dimethoxphenyl, trimethylsilyl derivative | phthaild adid, diethoxyethy, ester.
sebachic adid, dibenzyl ester
gingic adid, dibenzyl ester | , | nexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-exo-1,4:5,8-dimethano | | phthalic acid, dipentyl esterning. | nonagecale, 2,0,10,11,10 pencancon; ethion monoxon ethion monoxon and a second ethion ethion ethion ethion monoxon and a second ethion | hlorophenyl) (p, p'-DDE) | ethane, 1,1-dichloro-2-(2-chloropheny1)-2-(4-chloropheny1) {0,p'-TDE}
ethane, 2-(2-chloropheny1)-2-(4-chloropheny1)-1,1-dichloro (2,4'DDD) | ine | biphen, 1, 2,2',3,5',5',6-hexachloro (PCB 151) | | benzoic acid, 3,5-dinitro, 2,2,2-trichloroethyl ester
cinnamic acid. 3,4-dihvdroxyphenyl, trimethylsilyl derivative | | er, cis~y~ (ecnyi orec | phosphorothicic acid, 0-2,5-dichloro-4-iodophenyl O,O-dimethyl ester (iodofenphos) | ethene, 1,1-dichloro-2,2-bis(4-chloropheny1) (p,p'-DDE) benzoic acid, 3,5-dinitro, trans-3-hexenyl ester | cid, 3,5-dinitro,
-2(38)-one, 5-tert | 'nroe o | cocaine
amitripyline | | retention
Index | 2120
2120
2120
2121 | 2121
2121
2121 | 2122 | 2123
2124
2125 | 2125 | 212 <i>1</i>
2129
2130 | 2130 | 2135 | 2137 | 2139 | 2140 | 2140 | 2142 | 2143
2145 | 2146 | 2146 | 2147 | 2148 | 2149 | 2149 | 2149 | 2150 | 2151 | 2158 | 2159 | 2161
2162 | | NO | | |-----------|-------| | RETENTION | INDEX | | RETENTION
INDEX | COMPOUND NAME | STATIONARY
PHASE | |--------------------
--|---------------------| | TACANT | | | | 2162 | 3,5-dinitro, hex | SE-30
OV-1 | | 2163 | Lyl ester, 2,4-dlcnlorophenoxy (2,4-b iso-octyl | Me silicone | | 2165 | anthraces, y-nitro | 0V-1 | | 2165 | | SE-30 | | 2167 | thoxyphenyl, trime | 0V-1 | | 2168 | ٠., | OV - 1 | | 2169 | levorphanol | CD 311 5CB | | 2170 | biphenyl, 2,2',3,4',5',6 hexachloro (FCB 149) | -30 | | 2170 | naphthalene, 1,2,3,4,10,10-nexachloro-o,7-epoxy-1,4,4a,5,0,7,0,0a occanylate one 1,2,3,4,10,10-mexachloro-o,7-epoxy-1,4,4a,5,0,7,0,0a 1,2,3,4,10,10-mexachloro-o,7-epoxy-1,4,4a,5,0,7-epoxy-1,4,4a,5,6,7-epoxy-1,4,4a,5,6,7-epoxy-1,4,4a,5,6,7-epoxy-1,4,4a,5,7-epox | Me silicone | | 2170 | octedecanoid acid (stearic acid) | CP Sil 5CB | | 2171 | dichlorobenzyl decyl ether, 2,4- | gili | | 21/1 | naphCatene, 1,0-cmiltic | SE-30 | | 2112 | though anish dodary aster | SE-30 | | 2173 | | DB-1 | | 2174 | rorripyline | SE-30 | | 2174 | ohexyl ester | | | 2175 | 9,10,10-hex | | | 2175 | ethane, 1,1-dichloro-2,2-bis(4-ethylphenyl) (ethylan) | 7-10 | | 2175 | ethane, 1,1-dichloro-2,2-bis(4-ethylphenyl) (perthane) | 0.0 ~ T | | 2175 | octadecanoic acid, ethyl ester | 21-30 | | 2175 | octadecenoic acid, ethyl ester, cis-9- (ethyl oleate) | CF-30 | | 2175 | procainamide | מקין המי | | 2176 | dichlorobenzyl decyl ether, 2,4- | • | | 2177 | benzo(a) fluorene | | | 2177 | chloroprocaine | OV-1/SE-30 | | 21/0 | 11NOJULI aciu | Me silicone | | 21.18 | pichaluniani, 7,10 armin. 2,4- | CP Sil 5CB | | 2119 | ì | Me silicone | | 2180 | | OV-101 | | 2160 | j e | | | 2183 | benizationath or an ann an ann an ann ann ann ann ann a | | | 2183 | dichlorobenzyl decyl ether, 2,4- | | | 2183 | naphthalene, 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-exo-1,4:5,8-dimethano (endrin) | OV-1/SE-30 | | 2184 | ethane, 2,2-bis(4-chlorophenyl)-1,1-dichloro (4,4 DD) | 117 | | 2185 | naphthalene, I-ammino-4-nitro | DR-1 | | 218/ | *************************************** | Me silicone | | 9187 | torder
through 11 | DB-1 | | 2188 | curroran in control 2-sec-buty1-4,6-dinitropheny1 3-methy1 ester (morocide) | DB-1 | | 2190 | | SE-30 | | 2191 | benzephenone, 2-amino-5,2'-dichloro (lorazepam benzophenone) | Me silicone | | 2193 | zolamine | SE-30 | | 2194 | doxepin | SE-30 | | 2194 | methadone | Me silicone | | 2195 | benZo(b)fluorene | OV-1 | | 21.95 | methannie, phenytavecyı, timecmyısıry voliver.
Methannie, presidenti | Me silicone | | 2197 | tetracaine | SE-30 | | 2200 | desipramine | SE-30 | | 2200 | docosane | Me silicone | | 2200 | ethane, 1,1-dichloro-2,2-bis(4-chiorophenyi) (p,p'-rus) | T_ ^O | STATIONARY PHASE | | diphosphorodithioic acid, 0,0,0',0'-tetraethyl S,S'-methylene ester (ethion) | imidan oxygen analog | promazine | atropine
saharir acid. diethoxvethvl ester | Service with the servic | tribenzylamine | bipheny1, 2,2,3,4,4,5,-hexachioro (FCB 130) | dienioropensyl underyl eriel, 2,1.
phosphorodithioic acid, s-4-chlorophenylthiomethyl o,o-diethyl ester (trithion) | dichlorobenzyl undecyl ether, 2,4- | adipic acid, disyclopasyl eather | dichlorobenzyl undecyl etner, 2,4-
benztropine | dichlorobenzyl undecyl ether, 2,4- | phthalic acid, butyl benzyl ester | anthracene, 9,10-dicarbonitrile | octadecane, 1-jodo | phthalic acid, butyl benzyl ester | eicosane, 1-chloro | ethane, 1,1,1-trichlore-2,2-bis(4-chlorophenyl) (p.P'-DDI) | | dutphine, credy, phenylacetyl, trimethylsilyl derivative | maprotiline | ethane, 1,1,1-trichloro-2,2-bls(4-chlorophenyl) (p.pbur) | | phinalic acid, dihexyl ester | binaphthyl, 1,1'- | levallorphan | phthalic acid, dihexyl ester
is thinky 3-dishlammanul) seter | phosphoric acid, cirs(t,5-arcmiotopropr); cover | ptrpoxycanic
phralic acid, dihexyl ester | hydroxyamitriptyline | butane, 2-nitro-1,1-bis(4-chlorophany1 Bulan) butane, 2-nitro-1,1-bis(4-chlorophany1 butan) 0 0-diathul satar (resthankanothion) | phosphorodithical acid, S-[4-chioropheny])uniolmetnyi] o'o-usetnyi ester (carbophenousen)
shttsiin said hentul aster ester | phinally acts, here's pends of the property of the phinal octanoate) | piperidolate | phthalic acid, butyl octyl ester | glutamic acid, 4-methoxyphenylacetyl, trimethylsilyi delivative
hinhanni 2.27.3.37.4.47-hexachloro (PCB 128) | ordenie Codeline | dihydrocodeine | + | acid, nonyl propyl ester | 4-budroxv-3-methoxv, trimetholsilvl | acid, butyl benzyl ester | | |-------|--|----------------------|-----------|---|--|----------------|---|---
------------------------------------|----------------------------------|---|------------------------------------|-----------------------------------|---------------------------------|--------------------|-----------------------------------|--------------------|--|------|--|-------------|--|------|------------------------------|-------------------|--------------|---|---|---|----------------------|--|---|--|--------------|----------------------------------|---|------------------|----------------|------|--------------------------|-------------------------------------|--------------------------|-----| | INDEX | | | | 2269 | | | | 2277 | | | 2284 | | | 2288 | | | | | 2294 | 9622 | 2296 | | 2300 | 2305 | 2306 | 2306 | 2306 | 2307 | 2308 | 2309 | 2310 | 2310 | 2310 | 2316 | 2317 | 2319 | 2323 | 2323 | 2325 | 2325 | 2352 | 2327 | . 1 | Me silicone SE-30 DB-1 SE-30 Me silicone SE-30 Me silicone OV-1 CP Sil 5CB CV-1 CV-1 CP Sil 5CB SI | RETENTION
INDEX | COMPOUND NAME | |--------------------|--| | 2330 | ethane, 1,1,1-trichloro-2,2-bis(4-chlorophenyl) (p,p'-DDT) | | 2333 | 1 ester | | 2343 | phthalic acid, decyl ethyl ester | | 2345 | benzo (ghi) filoranthene | | 2348 | norpropoxypuene
adibic acid, dioctyl ester | | 2353 | lorazepam | | 2358 | guthion oxygen analog | | 2363 | acid, triphenyl ester | | 2363 | phosphoric acid, tris(butoxyetnyi) ester | | 2364 | ecthylmorphine
ecthylmorphine 1 | | 2366 | | | 2370 | northing acid, 3,5-dinitro, octyl ester | | 2370 | norpropoxyphene | | 2372 | anthracene, 9-methyl | | 2375 | F 1 1 - 1 | | 2375 | phosphorodithioic acid, o,o-dimetnyl s-phrhailmidometnyl ester (imidan) | | 2376 | codeine | | 2376 | diazepam
diazepam | | 23/6 | alazepann
alazepann | | 8/67 | acmer' '' | | 23/3 | ILUIGZEGGMI, N. Gebarry
Alisia orid Ail?-ethylhexyl) ester | | 1986 | 2, 3, 3, 5, 5, 6, 6, - | | 2381 | | | 2383 | Adinic acid, dioctyl ester | | 2383 | diazepam
diazepam | | 2385 | penzyl dodecyl ether, | | 2389 | ether, | | 2389 | methyl undecyl | | 2390 | benzophenone, 2-amino-5-nitro (nitrazepam benzophenone) | | 2391 | | | 2393 | dichlorobenzyl dodecyl ether, 2,4- | | 2395 | | | 2397 | adipic acid, diphenyl ester | | 2400 | pyrazine, 2-phenylthio | | 2400 | | | 2400 | tryptophan, N-acetyl, trimethylsilyl derivative | | 2404 | phthalic acia, meptyl mexyl ester | | 2403 | obrigora | | 2400 | | | 2405 | CEIDDENYI-ENE
*********************************** | | 2410 | actic acid, 4-chlore-2-methylmenovy (MCPA) | | 0177 | ecetic acid, *-citolo & metalythemony (with a
facetic acid, *-citolo & metalythemony) (methorythem) | | 2410 | ecumbe, 1.1.1.Truituro.4.4.Data mechanya, (mechanya) mechanya, mec | | 2414 | annihalic acid, dihexyl ester | | 2415 | phthalic acid, butvl nonl ester | | 2416 | from the list of the pertyl ester | | 2417 | ethane, 1,1,1-trichloro-2,2-bis(4-methoxyphenyl) (methoxychlor) | | 2417 | isophthalic acid, dihexyl ester | | 2417 | isophthalic acid, dihexyl ester | | 2419 | | | | | STATIONARY PHASE SE-30 SE-30 SE-30 Me silicone SE-30 Me silicone SE-30 OV-1 SE-30 DB-1 SE-30 DB-1 SE-30 OV-1 SE-30 OV-1 CP Sil 5CB SE-30 OV-1 OV-101 OV-101 OV-101 OV-101 OV-101 SE-30 | <pre>isophthalic acid, butyl octyl ester isophthalic acid, nonyl propyl ester isophthalic acid, nonyl propyl ester i</pre> | |--| | ethane,
1,1,1-trichloro-2,2-bis(4-methoxypheneethoxyphe | | butacaine | | codeine
biphenyl, 2,2',3,4,4',5,5'-heptachloro (PCB 180) | | isophthalic acid, decyl ethyl ester | | diazepam | | , n-desmethyl | | diphenyl sulphone, 2,4,4,7,5-certacuror (correction) phosphorodithioic acid, 0,0-dimethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] | | acid, 3-indolyl, trimethylsilyl der | | glyceryl dibenzoate isomer
benzoic acid. 4-nitro, undecyl ester | | adipic acid, diisooctyl ester | | cyclobuta[cd]pentalene, 1,1a,2,2,3,3a,4,5,5,5a,5b,6-dodecachlorooctahydro-1,3,4-metheno-1H- | | a, triocty, est | | cntorpromazina
oxycodone | | clohexyl e | | terephthalic acid, decyl ethyl ester | | hydantoin, 5-(4-metnyiphenyi)-5 phenyi
isophthalic acid, methyl undecyl ester | | terephthalic acid, nonyl propyl ester | | chlorprothixene
terephthalic acid, dihexyl ester | | diazepam | | phthalic acid, dicyclohexyl ester
benzene, 1.2,4-trichloro-5-[(4-chlorophenyl)sulphonyl] (tedion) | | oxymorphone | | phosphorodithioic acid, s-3,4-dihydro-4-oxo-1,2,3-benzotilazin-3-yimetnyi o,o-dimetnyi estei (gutmitu)
phosphoric acid, tri(2-ethylhexvl) ester | | alic acid, dihexyl ester | | phosphorodithioic acid, 0,0-dimethyl S-[(4- | | terephthalic acid, butyl octyl ester | | terephthalic acid, heptyl pentyl ester ester | | terephthalic acid, dinexyl elect. | | cycloburalculpentarene, ''''''''''''''''''''''''''''''''''' | | biphenyl, 2,2',3,3',4,4',5-heptachloro (PCB | | phthalic acid, dicyclohexyl ester | | Desiration of the second secon | | ethene, tetraphenyl | | cinnamoylcocaine
chthalic acid di(2-ethylhexyl) ester | | torak oxygen analog | | dichlorobenzyl tridecyl ether, 2,4- | | rerephrhaile acid, metmyi mmeeyi esesi
adibic acid, dinonyl ester | | androsterone | |--| | phosphorodithioic acid, s-6-chloro-2,3-dihydro-2-oxo-1,3-benzoxazol-3-ylmethyl o,o-diethyl ester (phosalone) dichlorobenzyl tridecyl ether, 2,4- | | methotrimeprazine | | benzophenone, 2-amino-2'-chloro-5-nitro (clonazepam benzophenone) | | phthalic acid, diheptyl ester
dichlorobenzul tridecul ether. 2.4- | | dichlorobenzyl tridecyl ether, 2,4- | | phosphonothioic acid, o-4-bromo-2,5-dichlorophenyl o-methyl phenyl ester (phosvel) | | phthalic acid, diheptyl ester | | phthalic acid, hexyl octyl ester | | nepazine | | phthalic acid, diheptyl ester
hinhenyl 2.2/3.3/4/.5.5/6-octachloro (PCB 201) | | pithalic acid, di(2-ethylhexyl) ester | | norpropoxypheneamide | | thylhexyl) | | phthalic acid, di(2-ethylhexyl) ester | | | | phthalic acid, di (2-ethylhexyl) ester | | phthalic acid, di(2-ethylhexyl) ester | | and Adjandent of A | | | | benzophenome, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenome) | | | | | | pntnalic acid, dilgoocly, egler
chlorpromazine | | acetylcodeine | | adipic acid, dioctyl ester | | Denzophenone, Z-amino-3-cnioro-Z-riuoro (Ilurazepam penzophenone) | | benzoic acid, 4-nitro, dodecyl ester | | phthalic acid, diphenyl ester | | phosphorodithioic acid, s-3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl o,o-diethyl ester (ethyl guthion) | | phosphorogichioic acid, 0,0-diechyl 3-1(4-0x0-1,2,3-bengotriazin-3(44)-71/mechyl) escer (azinphos-echyl)
phosphorodithioic acid, 8-2-chloro-1-phthalimidoethyl 0,0-diethyl ester (torak) | | biphenyl, 2,2',3,3',4,4',5,6-octachloro (PCB 195) | | aunosapine
annosapine
phosphorodithioic acid. O.O-diethVl S-[(4-oxo-1.2.3-benzotriazin-3(4H)-v])methVll ester (azinnhos-ethVl) | OV-1/SE-30 SE-30 CP Sil 5CB SE-30 Me silicone OV-101 CP Sil 5CB OV-101 SE-30 SE-30 OV-1 CP Sil 5CB OV-1 CP Sil 5CB OV-1 CP Sil 5CB OV-1 CP Sil 5CB OV-1 COMPOUND NAME RETENTION INDEX 2488 2488 STATIONARY PHASE 0V-1 Me silicone 0V-1 SE-30 SE-30 OV-1 | trimethoprim benrophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) phthalic acid, dioctyl ester actylocdeine actylocdeine actylocdeine actylocdeine adjoic acid, dioctyl ester phosphoroditrioci acid, anitro, dedecyl ester phosphoroditrioic acid, anitro, dedecyl ester phosphoroditrioic acid, alignenyl phosphoroditrio | 2511 | phthalic acid, diisodecyl ester | 1- AO | |---|---------
--|-------------| | phenzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) phthalic acid, disloctyl ester phthalic acid, disloctyl ester phthalic acid, disloctyl ester chlorpcomarine acetylocdeine acetylocdeine acetylocdeine acetylocdeine acetylocdeine acetylocdeine phralic acid, discotyl ester benzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) loxepine acid, dioctyl ester benzophenone, 2-amino-5-chloro-1'-2',3-benzotriazin-3'-yl o,o-diethyl guthion) phralic acid, dioctyl ester phensphorodithioic acid, 0.0-diethyl 8-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (ethyl guthion) phosphorodithioic acid, 0.0-diethyl 8-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, 0.0-diethyl 8-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) biphenyl, 2,2',3',4',5',6-octachloro (PCB 195) phosphorodithioic acid, 0.0-diethyl 8-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzolc acid, 3,5-dinitro, decyl ester dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ester phensphorodithalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2514 | trimethoprim | SE-30 | | phthalic acid, cyclohasyltridecyl ester phthalic acid, dioctyl ester phthalic acid, discoctyl ester phthalic acid, discoctyl ester phthalic acid, discoctyl ester chlorpromazine acetylcodesine adipic acid, discoctyl ester benzophenon, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) loxophenon, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) loxophenonic acid, 4-nitro, doddyl ester phosphorodithioic acid, a-3,4-dihydro-1-phthalimidoethyl o-o-diethyl ester (ethyl guthion) phosphorodithioic acid, 0,0-diethyl 2-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl) phosphorodithioic acid, 2-2-chloro-1-phthalimidoethyl o-o-diethyl ester (azinphos-ethyl) phosphorodithioic acid, 3-2-chloro-1-phthalimidoethyl o-o-diethyl seter amoralia acid, 3-5-dinitro, decyl ester dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- flurazepam, hydroxy-ethyl ethacosane phthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2517 | Denzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) | Me silicone | | phthalic acid, dioctyl ester phthalic acid, diisoctyl ester chlorpromazine acetylcodaine adipic acid, diisoctyl ester benzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) loxepine benzoic acid, 4-nitro, dodecyl ester phthalic acid, 4-nitro, dodecyl ester phthalic acid, 4-nitro, dodecyl ester phthalic acid, 4-nitro, dodecyl ester phosphorodithioic acid, 0-d-diethyl 5-[(4-oxo-1,2,3-benzotriazin-3/4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, 0-d-diethyl 5-[(4-oxo-1,2,3-benzotriazin-3/4H)-yl)methyl] ester (torak) phosphorodithioic acid, 0-d-diethyl S-[(4-oxo-1,2,3-benzotriazin-3/4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, 0-d-diethyl S-[(4-oxo-1,2,3-benzotriazin-3/4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, 3-f-dinitro, decyl ester dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ester phthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2518 | phthalic acid, cyclohexyltridecyl ester | OV-1 | | phthalic acid, diisooctyl ester chlorpromazine acetylodesine adipic acid, dioctyl ester adipic acid, dioctyl ester adipic acid, dioctyl ester benzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) loxepine benzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) loxepine benzophenone, 2-amino-5-chloro-1,2,3-benzotriazin-3-yl o,o-diethyl guthion) loxepine benzofic acid, 4-nitiro, dodecyl ester phosphorodithioic acid, s-3-4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl o,o-diethyl guthion) phosphorodithioic acid, s-2-chloro-1-phthalimidoethyl o,o-diethyl sater (torak) biphenyl, 2,2',3,3',4,4',5,6-octachloro (PCB 195) amorapine phosphorodithioic acid, 3,5-dinitro, decyl ester dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- flurazepam, hydroxy-ethyl flurazepam, hydroxy-ethyl flurazepam, hydroxy-ethyl ester isophthalic acid, diheptyl ester | 2519 | phthalic acid, dioctyl ester | ov-1 | | chlorpromazine adipic acid, dioctyl ester adipic acid, dioctyl ester benzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) loxepine benzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) loxepine benzophenone, 2-amino-5-chloro-1-pithalimidoethyl phyhalic acid, 4-nitro, dodecyl ester phosphorodithioic acid, 0,0-diethyl 8-[(4-oxo-1,2,3-benzotriazin-3/4H)-yl)methyl ester (ethyl guthion) phosphorodithioic acid, 0,0-diethyl 8-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl) phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] diacetylmorphine dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- flurazepam, hydroxy-ethyl phxalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2525 | phthalic acid, diisooctyl ester | OV-1/SE-30 | | acetylcodeine adetylcodeine adetylcodeine adaptic acid, dioctyl ester benzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) loxepine loxepine loxepine benzoic acid, 4-nitro, dedecyl ester phosphorodithicic acid, 4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl o,o-diethyl ester (ethyl guthion) phosphorodithicic acid, n-2-chloro-1-phthalimidocethyl o,o-diethyl ester (azinphos-ethyl) phosphorodithicic acid, n-2-chloro-1-phthalimidocethyl o,o-diethyl ester (torak) biphenyl, 2,2',3,3',4,4',5,6-octachloro (PCB 195) amoxapine phosphorodithicic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzoic acid, 3,5-dinitro, decyl ester dicacetylmorphine dicacetylmorphine dicacetylmorphine dichlorobenzyl tetradecyl ether, 2,4- acid, diheptyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2526 | chlorpromazine | Me silicone | | adipic acid, dioctyl ester benzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) benzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) loxephenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) benzoic acid, 4-nitro, dodecyl ester phosphorodithioic acid, 3-3,4-dihydro-4-oxo-1,2,3-benzotriazin-3/4H)-yl)methyl ester (ethyl guthion) phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3/4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, 9-2-chloro-1-phthalimidoethyl o,0-diethyl seter (torak) phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) phosphorophine dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ester, 2,4- dichlorobenzyl tetradecyl ester flurazepam yldcoxy-ethyl hexacosane phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester | 2530 | acetylcodeine | Me silicone | | benzophenone, 2-amino-5-chlorco-2'-fluoro (flurazepam benzophenone) loxepine benzorio acid, 4-nitro, dodecyl ester phthalic acid, diphenyl ester phthalic acid, diphenyl ester phosphorodithioic acid, a-3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl o,o-diethyl ester (ethyl guthion) phosphorodithioic acid, a-2-chloro-1-phthalimidoethyl o,o-diethyl ester (torak) phosphorodithioic acid, a-2-chloro-1-phthalimidoethyl o,o-diethyl ester (torak) biphenyl, 2,2',3,3',4,4',5,6-octachloro (PCB 195) amoxapined phosphorodithioic acid, 0,O-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzoic acid, 3,5-dinitro, decyl ester diachorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- flurazepam, hydroxy-ethyl hexacosane phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester | 2540 | adipic acid, dioctyl ester | 0V-1 | | loxepine benzoic acid, 4-nitro, dodecyl ester benzoic acid, diphenyl ester phrasin acid, diphenyl ester phrasin acid, diphenyl ester phrasin acid, diphenyl ester phosphorodithioic acid, a-3,4-dihydro-4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl ester (ethyl guthion) phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, a-2-chloro-1-phthalimidoethyl o,0-diethyl seter (torak) phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) amoxapine phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) diacetylmorphine dichlorobenzyl tetradecyl ether, 2,4-dichlorobenzyl acid, diheptyl ester sisphthalic acid, diheptyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2542 | benzophenone, 2-amino-5-chloro-2'-fluoro (flurazepam benzophenone) | Me silicone | | benzoic acid, 4-nitro, dodecyl ester phthalic acid, 4-nitro, dodecyl ester phthalic acid, diphenyl ester phthalic acid, diphenyl ester phosphorodithioic acid, 0.0-diethyl 8-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (ethyl guthion) phosphorodithioic acid, 0.0-diethyl 8-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, s-2-chloro-1-phthalimidoethyl o,o-diethyl ester (torak) biphenyl, 2,2',3,3',4,4',5,6-octachloro (PCB 195) amoxapine phosphorodithioic acid,
0.0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzoic acid, 3,5-dinitro, decyl ester dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- flurazepam, hydroxy-ethyl hexacosane phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2542 | loxepine | SE-30 | | phthalic acid, diphenyl ester phthalic acid, diphenyl ester phosphorodithioic acid, a-3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl o,o-diethyl guthion) phosphorodithioic acid, a-3,4-dihydro-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, a-2-chloro-1-phthalimidoethyl o,o-diethyl ester (torak) biphenyl, 2,2',3,3',4,4',5,6-octachloro (PGB 195) amoxapine phosphorodithioic acid, O,O-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzoic acid, 3,5-dinitro, decyl ester diacetylmorphine dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- flurazepam, hydroxy-ethyl hexacosane phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2550 | benzoic acid, 4-nitro, dodecyl ester | SE-30 | | phosphorodithioic acid, a-3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl o,o-diethyl ester (ethyl guthion) phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, a-2-chloro-1-phthalimidoethyl o,o-diethyl ester (torak) biphenyl, 2,2',3,3',4,4',5,6-octachloro (PCB 195) amoxapine phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzoic acid, 3,5-dinitro, decyl ester diacetylmorphine diacetylmorphine diacetylmorphine acid, 2,4-dichlorobenzyl tetradecyl ether, 2,4-flurazepam, hydroxy-ethyl ester fluracepam, hydroxy-ethyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2550 | phthalic acid, diphenyl ester | OV-1 | | phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) phosphorodithioic acid, s-2-chloro-1-phthalimidoethyl o,o-diethyl ester (torak) bippenyl, 2,2',3,3',4,4',5,6-octachloro (PGB 195) amoxapine phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzoic acid, 3,5-dinitro, decyl ester diacetylmoxphine diacetylmoxphine dichlorobenzyl tetradecyl ether, 2,4-dichlorobenzyl tetradecyl ether, 2,4-dichlorobenzyl tetradecyl ether, 2,4-dichlorobenzyl tetradecyl ether, 2,4-filurazopam, hydroxy-ethyl her, 2,4-filurazopam, hydroxy-ethyl ester flurazopam, hydroxy-ethyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2551 | phosphorodithioic acid, 8-3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-y1 o,o-diethyl ester (ethyl guthion) | DB-1 | | phosphorodithioic acid, s-2-chloro-1-phthalimidoethyl o,o-diethyl ester (torak) biphenyl, 2,2',3,3',4,4',5,6-octachloro (PCB 195) amoxapine phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzoic acid, 3,5-dinitro, decyl ester diacetylmorphine dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- phosphorodine, hydroxy-ethyl flurazepam, hydroxy-ethyl phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2553 | phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) | ov-1 | | biphenyl, 2,2',3,3',4,4',5,6-octachloro (PCB 195) amoxapine phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzolc acid, 3,5-dinitro, decyl ester diacetylworphine diacetylworphine dichlorobenzyl tetradecyl ether, 2,4- isuphthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2570 | phosphorodithioic acid, 8-2-chloro-1-phthallmidoethyl o,o-diethyl ester (torak) | DB-1 | | amoxapine phosphorodithioic acid, O,O-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzoic acid, 3,5-dinitro, decyl ester diacetylworphine dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- flurazepam, hydroxy-ethyl hexacosane phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2573 | bipheny1, 2,2',3,3',4,4',5,6-octachloro (PCB 195) | CP Sil 5CB | | phosphorodithioic acid, 0,0-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) benzoic acid, 3,5-dinitro, decyl ester diacetylumorphine diacetylumorphine diacetylumorphine diacetylumorphine dichlorobenzyl tetradecyl ether, 2,4-dichlorobenzyl tetradecyl ether, 2,4-dichlorobenzyl tetradecyl ether, 2,4-fluazepane, hydroxy-ethyl ester 2,4-fluazepane, hydroxy-ethyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2575 | amoxapine | SE-30 | | benzoic acid, 3,5-dinitro, decyl ester diacetylmorphine dichlorobenzyl tetradecyl ether, 2,4- flurazepam, hydroxy-ethyl hexacosana hydroxy-ethyl sythalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2579 | phosphorodithioic acid, O, O. diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] ester (azinphos-ethyl) | Me silicone | | diacetylworphine diachorphine dichlorobenzyl tetradecyl ether, 2,4- fluracepam, hydroxy-ethyl hexacosane phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2581 | benzoic acid, 3,5-dinitro, decyl ester | SE-30 | | dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- flurazepam, hydroxy-ethyl hexacosane phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2581 | diacetylmorphine | SE-30 | | dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- fluazepam, hydroxy-ethyl hexacosane phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2588 | dichlorobenzyl tetradecyl ether, 2,4- | | | dichlorobenzyl tetradecyl ether, 2,4- dichlorobenzyl tetradecyl ether, 2,4- flurazepan, hydroxy-ethyl hexacosane phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 2594 | dichlorobenzyl tetradecyl ether, 2,4- | | | dichlorobenzyl tetradecyl ether, 2,4- flurazepam, hydroxy-ethyl hexacosana by the ster phthalic acid, decyl pentyl ester isophthalic acid, diheptyl ester isophthalic acid, diheptyl ester | 5 6 0 0 | dichlorobenzyl tetradecyl ether, 2,4- | | | flurazepam, hydroxy-ethyl
hexacosana
phthalic acid, decyl pentyl ester
isophthalic acid, diheptyl ester
isophthalic acid, diheptyl ester | 5600 | dichlorobenzyl tetradecyl ether, 2,4- | | | hexacosane
phthalic acid, decyl pentyl ester
isophthalic acid, diheptyl ester
isophthalic acid, diheptyl ester | 5600 | flurazepam, hydroxy-ethyl | SE-30 | | phthalic acid, decyl pentyl ester
isophthalic acid, diheptyl ester
isophthalic acid, diheptyl ester | 5 6 0 0 | hехасовапе | Me silicone | | isophthalic acid, diheptyl ester
isophthalic acid, diheptyl ester | 5602 | phthalic acid, decyl pentyl ester | SE-30 | | isophthalic acid, diheptyl ester | 2092 | isophthalic acid, diheptyl ester | OV-101 | | | 5092 | isophthalic acid, diheptyl ester | OV-101 | | ž | | |---|--| | 3 | | | 턴 | | | 3 | | | Ξ | | | Э | | | | | | TENTION | COMPOUND NAME | STATIONARY
PHASE | |--------------
--|---------------------| | 2608 | isophthalic acid, diheptyl ester | SE-30 | | 2608 | | SE-30
OV-1 | | 2612 | benzodiazepin-2-one, 7-chloro-1-(cyclopropylmethyl)-1,3-dihydro-5-phenyl-2H-1,4- (prazepan) | OV-1/SE-30 | | 2612 | mestranol | OV-1/SE-30 | | 2613 | brombardam
 | Me Silicone | | 2619 | permentin cis
dinitrobancenesulphonamide, 4-(dipropylamino)-3,5- (oryzalin) | 1.1. | | 2620 | testosterone | /SE | | 2625 | 2',3,3',4,4'5,5'-octachloro (PCB 194) | CP Sil 5CB | | 2634 | cyclopropanecarboxylic acid, 3-(2,2-dichloroviny1)-2,2-dimethy1-, (3-phenoxypheny1)methyl ester (permethrin) | 30 | | 2637 | permethrin, trans | CP Sil 5CB | | 2639 | dlamorphine | Me Silicone | | 2641
2649 | rillulopelitaine
nobitablic acid. dinonvl ester | OV-1 | | 2654 | sthyl 0-(3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl) ester | 0V-1 | | 2657 | cyclopropanecarboxylic acid, 3-(2,2-dichloroviny1)-2,2-dimethy1-, (3-phenoxypheny1)methyl ester (permethrin) | 00-1 | | 2659 | | OV-1/SE-30 | | 2661 | terephthalic acid, disply, ester | OV ~ 1 0.1 | | 5007 | - | SE-30 | | 6/07 | Calcinicaline dimethyl | OV-1 | | 2681 | Notice of the control | SE-30 | | 2682 | this acid dioctyl ester | OV-101 | | 2685 | phthalic acid, dioctyl ester | SE-30 | | 2686 | benzoic acid, 3,5-dinitro, undecyl ester | SE-30 | | 2687 | phthalic acid, heptyl nonyl ester | SE-30 | | 2690 | , | - | | 2694 | | CP Sil 5CB | | 2695 | | 0V-1 | | 0607 | rerposenty 4 unitro-p-
dishlocopent annual ather 2 1- | 25-30
25 23 F25 | | 9700 | 17 (TOTTO | 110 | | 2700 | aspacia acid, dibutoxyethyl ester | | | 2704 | Φ | CP Sil 5CB | | 2705 | ntyldecyl ether, | Sil | | 2719 | ; | OV-1/SE-30 | | 2730 | _ | ov-1 | | 2735 | phinalic acid, dicyclonepryl ester | SE-30 | | 2741 | niciaepam
filoracepam | Me Silicone | | 2741 | quinine | SE-30 | | 2742 | azepoxide | SE-30 | | 2745 | sodecyl | 0V-1 | | 2745 | id, octyldecyl | 00-1 | | 2745 | | SE-30 | | 2750 | nitrazepam | OV-1/SE-30 | | 2759 | | SE-30 | | 78/7 | sebacic acid, dioctyl ester | | | 2788 | Illizaepan
Intraepand 3.5-dinitro, dodecul ester | Me silicone | | 2792 | di (2-ethylhexyl) este | SE-30
OV-1 | | 2793 | | OV-1/SE-30 | | 2800 | clonazepam | Me silicone | | | : | | STATIONARY PHASE | | dichlorobenzyl hexadecyl ether, 2,4-
dichlorobenzyl hexadecyl ether, 2,4-
dichlorobenzyl hexadecyl ether, 2,4-
hexachlorophane | vanicanie, 8-methoxyl
dichlorobenzyl hexadecyl ether, 2,4-
perylene
quinine
papaverine
hydroxyzine | cyclomethycaine phthalic acid, di (butoxyethyl) ester cholestane, Salpha- cholestane, Salpha- phthalic acid, dioctyl ester phthalic acid, decyl octyl ester phthalic acid, dinonyl ester haloperidol amoxapine, 7-hydroxy adipic acid, didecyl ester amoxapine, 8-hydroxy amoxapine, 8-hydroxy | prochlorperazine adipic acid, didecyl ester cestriol meclizine cholesterol strychnine strychnine cholesterol strychnine cholesterol cholesterol cholesterol cholesterol cholesterol cholesterol cholesterol sitoaterol cholesterol cholesterol cholesterol cholesterol sitoaterol cholesterol cholesterol cholesterol cholesterol cholesterol cholesterol cholesterol cholesterol cholesterol | cholesterol, 7-aenydro
cholestanone
sitosterol
campesterol
campesterol
ergostanol
lophenone
campesterol
campesterol
campesterol
sergost-8(14)-en-3beta-ol
ophenol | |--------------------|---|---|--|---|--| | NO | ੀ ਨੂੰ ਦੌ ਦੌ ਦ | តិ ដឹក្តី ជី ទី ទី ទី | | ិថិថិទីថិជីជីជីជីជីទីទីទីទីទីទីទីទីទីទីទីទីទីទីទ | | | RETENTION
INDEX | 2800
2800
2805
2807 | 2810
2810
2813
2814
2818
2832
2832 | 2841
2850
2855
2865
2866
2876
2876
2987
2900
2900 | 2922
2940
2940
3064
3064
3063
3064
3086
3115
3115
3115 | 3145
3145
3166
3193
3210
3210
3215
3215
3215
3215
3215 | CP Sil 5CB CP Sil 5CB CP Sil 5CB CV STATIONARY PHASE 00V-1 00 page 69 ## TABLE 2 SECOND TIER LIBRARY OF LINEAR TEMPERATURE PROGRAMMED RETENTION INDICES FULL VERSION IN ALPHABETICAL ORDER OF COMPOUND NAME | LIT
REF | 8 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 28
8
8
8 | 56 | 3 8
38 | 40 | 49 | 49 | 46 | 12 | 12 | 10 | 12
10 | 12 | 53 | 53 | 21 | 21 | 20 | 46 | 19 | 21
20 | 12 | |----------------------|--|--|---|---|--|----------------------------|--|--------------------------|----------------------------|---|--------------------------|--|-----------------------|--|--|-----------|---|--|----------------------------|---------------------------|-------------------------------------|----------------------------| | SAMPLE TYPE | standard
essential oil
standard
n standard | standard
n standard
n standard
n standard | standard | standard
standard | n standard | standard | standard | poog u | n standard | n øtandard | n standard | n standard
n standard | n standard | n standard | n standard | standard | standard | n standard | n food | standard | standard
n standard | n standard | | LEN CARRIER (m) GAS | 100 helium
50 helium
12
50 nitrogen | 12
50 hydrogen
50 hydrogen
50 nitrogen | | 12
2 | 50 nitrogen | 15 helium | 15 helium | 80 nitrogen | 25 nitrogen | 25 nitrogen | 25 nitrogen | 25 nitrogen
25 nitrogen | 25 | 2 nitrogen | 2 nitrogen | 1.5 argon | 1.5 argon | 2.4 nitrogen | 80 nitrogen | | 1.5 argon
2.4 nitrogen | 25 nitrogen | | (mm) | 0.5
0.30
0.20
0.20 | 0.20
0.32
0.32
0.20 | 0.20 | 0.20 | 0.2 | 0.25 | 0.25 | 0.28 | 0.30 | 0.30 | 0:30 | 0.30 | 0.30 | κŋ | 5 | 4.00 | 4.00 | 5.50 | 0.28 | | 4.00 | 0.30 | | COLUMN TYPE | wall-coated open tubular
bonded phase
bonded phase
wall-coated open tubular | bonded phase
bonded phase
bonded phase
wall-coated open tubular | bonded phase | bonded phase
15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | | bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | -coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 10%
w/w | 10% w/w on Diatoport S (80-100mesh) | 1 derivative
13% w/w on Chromosorb W AW | wall-coated open tubular | 25% w/w on Celite | 10% w/w on Diatoport S (80-100mesh) | wall-coated open tubular | | COLUMN MATERIAL | glass
quartz glass
quartz glass
quartz glass | quartz glass
quartz glass
quartz glass
quartz glass | quartz glass | quartz glass | trichloro Me silicone quartz glass Me silicone quartz glass Me silicone quartz glass | quartz glass | opyi (propachioi)
quartz glass | glass | quartz glass | quartz glass | /l ester
quartz glass | ester
quartz glass
quartz glass | ester
quartz glass | nenoxy (2,4,5-T)
quartz glass | oxy (2,4-b)
quartz glass | | trimet | nyl, trimethylsilyl | • | er | mecnyratry. | ester
quartz glass | | N STATIONARY N PHASE | SE-30
OV-1
Me silicone
SE-30 | Me silicone
OV-1
OV-1
SE-30 | acenaphthylene-1-carbonitrile 1750 HP Me silicone q | Me silicone
diethylacetal
SE-30 | trichloro Me silicone | -cnioro-2', 0' -du
DB-1 | Z-cnioro-n-isopropyi (propa
DB-1 quartz gla | OV-101 glass | 1,1-dimethylpropy
SE-30 | 1, 2-dimecnyipropyi ester
SE-30 quartz | -methyl-3-but
SE-30 | -methylbutyl
SE-30
SE-30 | -methylpropyl es | 2,4,5-trichlorophenoxy (2,4,5-SE-30 quartz glass | 2,4-dichlorophenoxy (2,4-D)
SE-30 quartz gla
9 5.dibudroxumbenul lastone | 0V-1 | 5-dihydroxyphenyl,
OV-1 | 2,5-dimethoxyphenyl,
SE-30 | 2-furfuryl ester
OV-101 | 2-hydroxyphenyl,
SE-30 | | 2-methylpropyl es
SE-30 | | COLUMN | thene
Hall
HP | thylene
HP
SAC
SAC | thylene
HP | HP
shyde, | ehyde, | | | | | | | acid, 1
SGE
SGE | | | acid, 2
PEC | | acid, 2 | | | | | acid, 2
SGE | | LTP
INDEX | acenaphthene
1357
1423 Hall
1424 HP
1522 | acenaphthylene
1402 HP
1412 SAC
1412 SAC
1491 | acenaphthylene-1
1750 HP | 1759 HP
acetaldehyde,
0717 | acetaldehyde,
0699 | acetanilide,
1882 | acetan111de,
1608 | | | | | acetic (
0828 | | | acetic 1766 | | acetic
1845 | acetic 1677 | | | | acetic
0749 | | LIT | 1 | 10
18 | 10 | 20 | 21 | 21
20 | 21 | 10 | 21 | 21
20 | 21 | 20 | 19 | 12 | 53 | 78 | 21 | 19 | 20 | 21 | 21 | 10 | - | 19 | 40 | |--|--|--|--------------------------|---|----------------------|--|---|--------------------------|--|---|--|---------------------|------------------------------|--------------------------|--|--------------|--|---------------------------|---------------------------|-------------------------------------|---|---------------------------|---|-----------------------|----------------------------------| | LEN CARRIER SAMPLE TYPE (m) GAS SAMPLE TYPE | 0 4 helium standard | 0 25 nitrogen standard
3.6 standard | 0 25 nitrogen standard | 0 2.4 nitrogen standard | 0 1,5 argon standard | 0 1.5 argon standard
0 2.4 nitrogen standard | 1.5 | 0 25 nitrogen standard | 0 1.5 argon standard | 0 1.5 argon standard
0 2.4 nitrogen standard | 0 1.5 argon standard
0 1 5 argon standard | 2.4 nitrogen | | 0 25 nitrogen standard | 8 6 | 50 hydrogen | 0 1.5 argon standard | standard | 2.4 nitrogen | .00 1.5 argon standard | 0 1.5 argon standard
0 2.4 nitroden standard | 25 | 0 4 helium standard | standard | 50 nitrogen standard | | OI (mm) | 3.00 | 0.30 | 0.30 | 5.50 | 4.00 | 4.00 | 4.00 | 0.30 | 4.00 | 5.50 | 4.00 | 5.50 | | 0.30 | 200 | 0.32 | 4.00 | | 5.50 | 4. | 4.00 | 0.30 | 3.00 | | 0.2 | | COLUMN TYPE | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular
10%w/w on Celite 560 AW(60-80mesh) | wall-coated open tubular | trimethylsilyl derivative
13% w/w on Chromosorb W AW | | yl derivative
10% w/w on Diatoport S (80-100mesh)
13% w/w on Chromosorb W AW | 1yl derivative
10% w/w on Diatoport S (80-100mesh) | wall-coated open tubular | trimethylsilyl derivative
10% w/w on Diatoport S (80-100mesh) | derivative
10% w/w on Diatoport S (80-100mesh)
13% w/w on Chromosorb W AW | 10% w/w on Diatoport S (80-100mesh) | w/w on Chromosorb W | 25%w/w on Celite | wall-coated open tubular | | bonded phase | trimethylsilyl derlyative
10% w/w on Diatoport S (80-100mesh) | 25%w/w on Celite | 3 | 10% w/w on Diatoport S (80-100mesh) | derivative 10% w/w on Diatoport S (80-100mesh) 13% w/w on Chromosorb W AW | ated | ester
3% w/w on Chromosorb W HP (80-100mesh) | 25%w/w on Celite | wall-coated open tubular | | COLUMN MATERIAL | glass | quartz glass
aluminium | quartz qlass | | tri | nyl, trimethylsilyl | lyl), trimethylsilyl | glē | <u>,</u> | trimethylsilyl d | chylsilyl derivative | trimethylsilyl d | | 9 | iphenoxy (MCFA)
quartz glass | gla
gla | Ţ, | | trimethylsilyl d | | trimethylsilyl d | quartz glass | lohexyl | | r
quartz glass | | MN STATIONARY | naphthyl
OV-1 | 2-propenyl ester
SE-30
SE-30 | 2-propynyl ester SE-30 | 3,4,5-trimethoxyphenyl,
SE-30 | 3,4-dihydroxyphenyl, | 3,4-dimethoxyphenyl
OV-1 | 3-(5-hydroxyindolyl)
OV-1 | 3-butenyl ester
SE-30 | 3-hydroxy-4-methoxypheny
OV-1 | 3-hydroxyphenyl,
OV-1
SE-30 | 3-indolyl, trimethyl | 3-methoxyphenyl, | 3-methylbutyl ester
SE-30 | | 4-chloro-2-methylphenoxy
SE-30 quartz | ov-1
ov-1 | 4-hydroxy-3-methoxypheny
OV-1 | 4-hydroxyphenyl,
SE-30 | 4-hydroxyphenyl,
SE-30 | 0V-1 | 4-methoxyphenyl,
OV-1
cr-30 | 4-pentenyl ester
SE-30 | 4-tert-octyl-2-methylcyc
OV-1 glass | benzyl ester
SE-30 | bromomethyl ester
Me silicone | | COLUMN | acid, | acid,
SGE | acid, | acid, | acid, | acid, | acid, | acid,
SGE | acid, | acid, | acid, | acid, | acid, | SGE | acid,
PEC | SAC | acid, | acid, | acid, | | acid, | acid,
SGE | acid, | acid, | acid, | | LTP
INDEX | | acetic a
0656
0670 | | | | | acetic a
2206 | | acetic a | | | 1934
acetic a | | | | 2410
2410 | acetic a | acetic a | acetic 6
1628 | | acetic and 1513 | | acetic (| acetic a | acetic (
0809 | | LIT
REF | 38
10
32
19 | 1
28
44 | 40 | 19 | 10 | 19 | 40 | 12 | 11 | 11 | 46 | ოო | ო | 40 | 19 | H | 10 | 7 | 28 | 455 | 45 | 32 | - | 18 | 32 | - | |-----------------------------|---|--|--------------------------|------------------|--------------------------|--|--------------------------|--------------------------|--|--------------------------|----------------------|---------------------------|--------------|--------------------------|-----------------------|----------------------------|--------------------------|-------------------------|--------------|------------------------|----------|--|--|------------------------------------|---------------------------------------|---| | SAMPLE TYPE | standard
standard
standard
standard | standard
standard
tap water | standard | standard | standard | standard
standard | standard | standard | standard
standard | standard | food | standard
essential oil | standard | standard | standard | standard | standard | prantage | standard | standard
standard | standard | standard | standard | standard | standard | standard | | LEN CARRIER (m) GAS | 2
25 nitrogen
100 helium | 4 helium
50 hydrogen
25 helium | 50 nitrogen | | 25 nitrogen | 25 nitrogen | 50 nitrogen | 25 nitrogen | 25 nitrogen | 25 nitrogen | | | 50 helium | 50 nitrogen | | 25 nitrogen | 25 nitrogen | | 50 hydrogen | 50
50 | 50 | 100 helium | 4 helium | 3.6 | 100 helium | 4 helium | | TO (mm) | | 3.00 | 0.2 | | 0.30 | 0.30 | 0.2 | 0.30 | 0.30 | 0.30 | | | 0.30 | 0.2 | | 0.30 | 0.30 | | 0.32 | | | 0.5 | 00.6 | es. | 0.5 1 | 3.00 | | COLUMN TYPE | 15% w/w on Gas-Chrom Q (100-120 mesh) wall-coated open tubular wall-coated open tubular 25% w/w on Celite | <pre>(2,4-D butyl ester) 3% w/w on Chromosorb W HP (80-100mesh) 3 bonded phase</pre> | wall-coated open tubular | 25%w/w on Celite | wall-coated open tubular | 25%w/w on Celite
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
25%w/w on Celite | wall-coated open tubular | -coated open tubular | | bonded phase | wall-coated open tubular | 25%w/w on Celite | wall-coated open tubular 0 | wall-coated open tubular | (2,4-D iso-octyl ester) | bonded phase | | | <pre>wall-coated open tubular (2,4-D isobutyl ester)</pre> | 3% w/w on Chromosorb W HP (80-100mesh) 3 | 10%w/w on Celite 560 AW(60-80mesh) | -coated open tubular | (2,4,5-1 isopiopyi eater)
/w on Chromosorb W HP (80-100mesh) | | COLUMN MATERIAL | z glass | ichlorophenoxy
lass
uartz glass | ər
quartz glass | | er
quartz glass | quartz glass | ester
quartz glass | guartz glass | quartz glass | quartz glass | | | quartz glass | quartz glass | | quartz glass | quartz glass | υ | quartz glass | gla <i>ss</i>
glass | glass | glass
2,4-dichlorophenoxy | glass | aluminium | glass wall | glass |
 UMN STATIONARY
SIN PHASE | utyl ester
SE-30
SE-30
SE-30
SE-30
SE-30 | butyl ester, 2,4-
OV-1
OV-1
Me silicone | ₽.~ | Η . | | | l es
ne | | dodecyl ester
SE-30
SE-30 | SE-30
SE-30 | 01 | | OV-1 | 9 | heptyl ester
SE-30 | SE-30 | SE-30
SE-30 | ester, | ester | 0V-101
0V-101 | - | SE-30
isobutyl ester, 2 | OV-1 | SE-30 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | COLUMN | ! | acid,
SAC
HP | acid, | acıd, | acid,
SGE | acid,
SGE | acid, | acid,
SGE | acid,
SGE | SGE | | Hall
Hall | Hall | ים יי | acid, | SGE | SGE | acid, | SAC | | | acid, | ים.
טונטפ | , , | actu, | acra' | | LIP | acetic
0792
0793
0799
0802 | acetic
1840
1841
1927 | acetic
0749 | acetic
1422 | acetic
0969 | acetic
1395
1400 | acetic
0833 | | | 0593
0593 | 0090 | 0607
0611 | 0616 | | acetic
1096 | 1166 | | | 2163 | | 0750 | | 1805 | | | 1825 | | LIT
REF | - | 13 | 11 | H | | 1 | 28 | -1 | 12 | 11. | 11 | ; | 10
19 | 19 | i
i | 21
20 | 00 | 10 | 19 | 9 | 7 | 40 | 11 | ď | 38 | ,,, |) IŲ | m | m | m | m | n e | m | 38 | |---------------------|---|--|--------------------------|----------------------------------|------------------------|---|--------------|---------------------------|--------------------------|--------------------------|--------------------------|-----|--|-----------------------------|------------------------|--|---------------------------------------|------------------------|------------------|-----------------------------|----------|--------------------------|--------------------------|------------------------------------|----------|--------------------|--------------------------|--------------|--------------|------|---------------|----------|---------------|---------------------------------------| | SAMPLE TYPE | standard | standard | standard | standard | | standard | standard | standard | standard | standard | standard | • | standard
standard | standard | | standard
standard | | standard | standard | standard | 5 | standard | standard | atandard | standard | essential oil | | standard | standard | | essential oil | standard | essential oil | standard | | LEN CARRIER (m) GAS | 8 | 6.1 nitrogen | 25 nitrogen | 4 helium | | 4 helium | 50 hydrogen | | 25 nitrogen | 25 nitrogen | 25 nitrogen | | Z5 nitrogen | | | 1.5 argon
2.4 nitrogen | • | 25 nitrogen | | 25 nitrogen | | 50 nitrogen | 25 nitrogen | | 7 | 50 helium | | 50 helium | 50 helium | | 50 helium | | 50 helium | 2 | | CI (mm) | 3.00 | 3.20 | 0.30 | 3.00 | | 3.00 | 0.32 | 9 | 0.30 | 0.30 | 0.30 | , | 0.30 | | | 5.50 | • | 0.30 | | 0.30 |)
} | 0.5 | 0.30 | | 2.0 | 0.30 | | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 2.0 | | COLUMN TYPE | oxy (2,4-D isopropyl ester) 3% w/w on Chromosorb W HP (80-100mesh) | 10%w/w on Chromosorb W BMDS(60-80mesh) | wall-coated open tubular | - ~ | (2,4,5-T methyl ester) | 3% w/w on Chromosorb W HP (80-100mesh) (2,4-D methyl ester) | phase | L4 | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | • | wall-coated open tubular
25%w/w on Celite | 25%w/w on Celite | | 10% w/w on Diatoport S (80-100mesh) 13% w/w on Chromosorb W AW | 15% w/w on Gaa-Chrom O (100-120 meah) | "," coated open tubula | 25%w/w on Celite | wall-coated open tubular | i
i | wall-coated open tubular | wall-coated open tubular | 10%w/w on Celite 560 AW(60-80mesh) | | bonded phase | wall-coated open tubular | bonded phase | bonded phase | | bonded phase | | bonded phase | 15% w/w on Gas-Chrom Q (100-120 mesh) | | COLUMN MATERIAL | | stainless steel | quartz glass | 2,2-bis(4-chlorophenyl)
qlass | 4,5-trichlorophenoxy | glass
2,4-dichlorophenoxy | quartz glass | grass | quartz glass | quartz glass | quartz qlass | , | quartz glass | ester | silyl derivative | | | quartz glass | | ester
quartz qlass | 'n | quartz glass | quartz glass | aluminium | | quartz qlass | י | quartz glass | quartz glass | 91 | quartz glass | 2,5 | | | | MN STATIONARY | sopropyl ester,
OV-1 | អ | | methyl ester, 2,2.
OV-1 | ster, 2, | -1
ester, | · | OV-1
methylethyl ester | SE-30 c | | er | ter | -30
-30 | phenyl, methyl est
SE-30 | phenyl, trimethylsilyl | OV-1
SE-30 | propyl ester | | | trans-3-hexenyl e:
SE-30 | methyl e | ilicone | undecyl ester
SE-30 | vinyl ester
SE-30 | SE-30 | -trichloro
OV-1 | SP-2100 | OV-1 | | | OV-1 | | 0V-1 C | SE-30 | | | 11 | | acid, SGE | acid, | acid, | acid. | | acid, | | | acid, | | SGE | acid, | acid, | | acid, | SGE | | acid,
SGR | _ | | acid, see | acid, | | , 1,1,1.
Hall | Supelco | Hall | Hall | Hall | Hall | Hall | Hall | trite | | LTP
INDEX | 11 | | | acetic
2085 | | 1740 | | 1605
acetic | 0639 | | | | 0892
0898 | acetic
1155 | | 1264
1281 | acetic | 0695 | | acet1c 0 | | | acetic 1490 | acetic a | 0564 | acetone,
0815 | 0815 | 0815 | 0705 Hall | 0707 | 0708 | 0794 | 0794 | acetonitrile
0464 | | LIT | мммм | 40 | ๛๛๛๓ | мммм | 40 | 47 | 56 | 38 | 60
40 | 40 | п н4 | H 47 | - | | ঘ | - | - | 4 | |-------------------------|---|--------------------------------------|--|--|--|--------------------------|------------------|--|--|---|--|--|--|---|-----------------------------|--|--|------------------| | SAMPLE TYPE | standard
essential oil
standard
standard | | standard
standard
essential oil
standard | standard
standard
essential oil
standard | standard | standard | standard | standard
air | standard
standard | | standard
standard
standard | standard
standard | standard | standard
standard | standard | standard | standard | standard | | LEN CARRIER
(m) GAS | 50 helium
50 helium
50 helium
50 helium | | 50 helium
50 helium
50 helium
50 helium | 50 helium
50 helium
50 helium
50 helium | 50 nitrogen | 25 helium | 12 | 2
50 helium | 50 nitrogen
50 nitrogen | 50 nitrogen | 4 helium
4 helium | 4 helium | 4 helium | 4 helium
4 helium | | 4 helium | 4 helium | | | ID (mm) | 0.30
0.30
0.30 | 0.2 | 0.30 | 0.30
0.30
0.30
0.30 | 0.2 | 0.20 | 0.20 | 2.0 | 0.22 | 0.2 | 3.00 | 3.00 | 3.00 | 3.00 | | 3.00 | 3.00 | | | COLUMN TYPE | bonded phase
bonded phase
bonded phase
bonded phase | 0 | bonded phase
bonded phase
bonded phase
bonded phase | bonded phase
bonded phase
bonded phase
bonded phase | <pre>wall-coated open tubular derivative 10% w/w on Diatoport S (80-100mesh)</pre> | | bonded phase | 15% w/w on Gas-Chrom Q (100-120 mesh) bonded phase | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh)
3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) 3% w/w on Chromosorb W HP (80-100mesh) | | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | | | COLUMN MATERIAL | quartz glass
quartz glass
quartz glass
quartz glass | | quartz glass
quartz glass
quartz glass
quartz glass | quartz glass
quartz glass
quartz glass
quartz glass | quartz glass
, trimethylsilyl | quartz glass | quartz glass | quartz glass | quartz glass
quartz glass | quartz glass
ester | glass
ester
glass
glass | glass
glass | ar
glass | glass
glass | glass | glass | glass | glass | | N STATIONARY
N PHASE | bromochloro
OV-1
OV-1
OV-1 | chloro
Me silicone
dibromo | 0V-1
0V-1
0V-1 | dichloro
0V-1
0V-1
0V-1 | trichloro
Me silicone q
4-methoxyphenyl,
OV-1 | Me silicone | Me silicone | SE-30
OV-1 | ne, 1-chloro
OgawaLtd OV-101
Me silicone | 2-chloro
Me silicone
di(2-ethvlhexvl) | v | . 00 | nexyl este
1 | | dietnyi ester
CV-1/SE-30 | dilgoburyi ester
OV-1 | | | | COLUMN | | | | | | deine
HP | HP : | trile
Hall | ne, i-
OgawaL | ~ | | | | | acid, d | | | acia, a | | LTP
INDEX | acetonitrile,
0758 Hall
0765 Hall
0768 Hall
0769 Hall | acetonitrile
0662
acetonitrile | 0857
0860
0861
0861 | acetonit
0692
0693
0693
0695 | acetonitrile
0668
aceturic aci
2082 | acetylcodeine
2530 HP | acridine
1789 | acrylonitrii
0500
0876 Hall | adamantane,
0977 Ogav
1286 | adamantane,
1332 | | | | | | | | adipic a
2444 | | LIT | 19 | 7 | 44 | Ħ | Ħ | ī | 21 | 21 | 47 | 23 | 23 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | |--|--|--|---|--|--|--|---
---|--------------------------------------|-------------------------------------|--------------------------|---|---|---|---|---|---|---|---|---|---|--|---|---|---| | SAMPLE TYPE | standard
standard | standard | tap water
standard
standard | standard | LEN CARRIER (m) GAS | 4 helium | 4 helium | 25 helium
4 helium
4 helium | 4 helium | 4 helium | 4 helium | 1.5 argon | 1.5 argon | 25 helium | 15 helium | 15 helium | 1 argon | l argon | 1 argon | l argon | 1 argon | l argon | l argon | 1 argon | 1 argon | 1 argon | l argon | 1 argon | 1 argon | 1 argon | | OI (mm) | 3.00 | 3.00 | 3.00
3.00 | 3.00 | 3.00 | 3.00 | 4.00 | 4.00 | 0.20 | 0.25 | 0.25 | 8 | N | 8 | 7 | 7 | 8 | 8 | 8 | Ø | 8 | 8 | 2 | ~ | 61 | | COLUMN TYPE | 25%w/w on Celite
3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) 3% w/w on Chromosorb W HP (80-100mesh) | <pre>1 derivative 10% w/w on Diatoport S (80-100mesh)</pre> | $^{\rm ve}$ 10% w/w on Diatoport S (80-100mesh) | | wall-coated open tubular | wall-coated open tubular | Chromosorb W HP (silanised 80-100 mesh) | RY COLUMN MATERIAL | r
glass | glass | ne
glass
glass | r
glass | r
glass | | trime | trimethylsilyl derivative
1 | ne quartz glass | quartz glass | quartz glass | | (butane, 2-amino)
)l pyrex glass | pyrex glass | pyrex glass | 3-amino)
pyrex glass | pyrex | LIP COLUMN STATIONARY INDEX ORIGIN PHASE | acid, dimethyl
SE-3
OV-1 | acid, dinonyl | acid, dioctyl ester HP Me silico OV-1 OV-1 | acid, diphenyl este | acid, dipropyl es | 0 | N-acetyl-4-metho | etylphenyl,
OV-1 | allobarbitone
1609 HP Me silicone | alphaprodine
1777 Jaw Sci. SE-30 |) | I, I-dimecnyleti | 1-metnyipropyi
0V-10 | _ | 3-methylbutyl | allyl (propene, OV-101 | Ducyi (Ducane, | | | | amine, diethyl OV-101 | of the control | | methylpenty:
OV-101 | | | LIT
REF
==== | 42 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 4 | 23 | 47 | 23 | 23 | 23 | 23 | 4 | п | 23 | 28 | 28 | 28 | 28 | 67 | 28 | 28 | 28
28 | |--|---|--------------|--------------|--------------|--------------|--------------|--------------|----------------------------------|------------------|-------------------------------------|-------------------------------------|----------------------------------|---|---|------------------------------------|--------------------|--|------------------------------------|--------------|--|--------------|--------------|-------------------|--------------|--------------|------------------------------| | SAMPLE TYPE | standard ı standard | ı standard | ı standard | standard | ı standard | ı standard | ı standard
ı standard | | LEN CARRIER (m) GAS | 1 argon | 15 helium | 15 helium | 25 helium | 15 helium | 15 helium | 15 helium | 15 helium | | 4 helium | 15 helium | 50 hydrogen | 50 hydrogen | 50 hydrogen | 50 hydrogen | 15 helium | 50 hydrogen | 50 hydrogen | 50 hydrogen
50 hydrogen | | I OII (mm) | 8 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0,25 | | 0.25 | 0.20 | 0.25 | 0.25 | 0.25 | 0.25 | | 3.00 | 0.25 | 0.32 | 0.32 | 0.32 | 0.32 | 0.25 | 0.32 | 0.32 | 0.32 | | COLUMN TYPE | Chromosorb W HP (silanised 80-100 mesh) | bonded phase | wall-coated open tubular | | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | $3\ensuremath{^\circ}$ w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | bonded phase | bonded phase | bonded phase | bonded phase | ,
bonded phase | bonded phase | bonded phase | bonded phase
bonded phase | | COLUMN MATERIAL | rex | quartz glass glass | quartz glass | glass | glass | quartz glass | | quartz glass | quartz glass | quartz glass
quartz glass | | LTP COLUMN STATIONARY INDEX ORIGIN PHASE | propyl (pro | | | | | | | amine, tri-n-propyl
0937 DB-1 | on
OV-1/SE-30 | amitripyline
2162 J&W Sci. SE-30 | amobarbitone
1727 HP Me silicone | amoxapine
2575 J&W Sci. SE-30 | amoxapine, 7-hydroxy
2900 J&W Sci. SE-30 | amoxapine, 8-hydroxy
2907 J&W Sci. SE-30 | amphetamine
1111 J&W Sci. SE-30 | rone
OV-1/SE-30 | OV-1 | anileriaine
2839 J&W Sci. SE-30 | | aniline, 2,4-dichloro
1287 SAC OV-1 | | | | ໝ | LO . | | | LIT | 28
49 | 28 | 28 | 28 | 28 | 49 | Q, | 0,0 | ט ע | 49 | } | 78 | 38 | ŭ | 200 | 20 | 1 | 0 0 | 200 | | 28 | 50 | 20 | nc | 28 | 20 | 20 | 20 | 50 | ט נ | 50 | ć | 8 J | 4.3 | 50 | 20 | 20 | 20 | 20 | |---------------------------|--|----------------------------|-------------------------|-------------------------|-------------------------|--|--------------------------|-----------|--|-----------------------------|-----------------|--------------------------|---------------------------------------|---------------|--------------------------|--------------------------|---------------|-------------------------|--|----------------------|--------------|-------------|----------------|--------------------------|---|--------------------------|--------------|--------------------------|--------------------------|-------------|-------------|-------------|--|----------------------------|--------------------------|---------|--------------------------|--------------------------|--------------------------| |) LEN CARRIER SAMPLE TYPE | 12 50 hydrogen standard
15 15 helium standard | 12 50 hydrogen standard | 12 50 hydrogen standard | 32 50 hydrogen standard | 32 50 hydrogen standard | 25 15 helium standard | | 50 helium | 20 50 helium standard
20 50 helium standard | 25 15 helium standard | matter or | .32 50 hydrogen standard |) 2 standard | 1 : 1 | .30 25 nitrogen standard | 25 nitrogen | | 30 25 nitrogen standard | 25 nitrogen | | 50 hydrogen | 25 nitrogen | 30 25 nitrogen | 30 Z3 nitrogen standard | | 25 nitrogen | 25 nitrogen | | 30 25 nitroden standard | 25 nitroden | 25 nitrogen | | 32 ou nydrogen standard
30 25 nitroden standard | 50 helium | 25 nitrogen | 25 | | 25 | 25 | | ID (mm) | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.25 | 0. | 0.20 | 0.20 | c | ; | 0 | 2.0 | • | | 0 | | 0.30 | | | 0.32 | 0 | • | :
> | 0 | 0.30 | • | 0 | C | 00.0 | 0 | • | 0.32 | 0.30 | 0 | 0 | 0 | 0 | 0 | | COLUMN TYPE | bonded phase
bonded phase | bonded phase | bonded phase | bonded phase | 0 | opyl (planavin)
bonded phase | wall-coated open tubular | open | wall-coated open tubular | (benefin) | bonded pilase | bonded phase | 15% w/w on Gas-Chrom Q (100-120 mesh) | | wall-coated open tubular | open | 1 | open | wall-coated open tubular
wall-coated open tubular | ;
L | bonded phase | oben | oben | wall-coated open tubular | bonded phase | wall-coated open tubular | -coated open | wall-coated open tubular | wall-coated onen tubular | 1000 | open | - | bonded phase | 1 | wall-coated open tubular | -coated | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
| | COLUMN MATERIAL | quartz glass
quartz glass | quartz glass | quartz glass | | | 6-dinitro-N,N-dipropyl
quartz glass b | | | quartz glass | 6-dinitro-4-trifluoromethyl | quartz glass | quartz glass | | ٠ | 9. | soda glass
soda glass | 'n | 9. | soda glass | , | quartz qlass | ~ | 9 | soda glass | martz dlass | _ | | soda glass | 0 | 2 2 | soda glass | , | quartz glass | goda grass
quartz glass | _ | ğı | goda qlass | q, | 91 | | STATIONARY
PHASE | chloro
OV-1
DB-1 | chloro
OV-1 | co
ov-1 | co
OV-1 | | 4-methyl suphonyl-2,6
DB-1 | nethyl | ov-1 | 0V-1 | hy1-2, | DB-1 | _ov-1 | SE-30 | 5-tetrachloro | SE-30 | SE-30 | 6-tetrachloro | SE-30 | SE-30 | 255-30
-triabloro | OV-1 | SE-30 | SE-30 | SE-30 | 0-recrachioro | SE-30 | SE-30 | SE-30 | 5-trichloro | 001 20 | SE-30 | 6-trichloro | 0V-1 | OV-101 | SE-30 | SE-30 | chloro
SE-30 | SE-30 | SE-30 | | COLUMN | ß | , 3,5-dichloro
SAC OV-1 | , 3-chloro
SAC | Ø | Ø | | , N, N-dimethyl | | | | N-phens | SAC | | 2,3,4, | SGE | S CE | 2,3,4, | SGE | SGE | 0.6E | SAC | SGE | SGE | | , 2, 3, 5, 6
0, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, | 3.00
E.00 | SGE | | 2,3, | SGE | 3 S S | 2,3, | SAC | 300 | SGE | SGE | 2, 3-d1
SGE | SGE | SGE | | LTP
INDEX | aniline,
1377
1387 | aniline,
1352 | aniline,
1158 | aniline,
1161 | aniline,
1538 | aniline,
2366 | aniline, | 1062 | 1062 | aniline, | 1672
aniline | 1575 | anisole
0916 | anisole, | 1620 | 1644 | anisole, | 1500 | 1520 | 1530 | 1465 | 1469 | 1484 | 1494 | anisole, | 1497 | 1516 | 1529 | anisole, | 1418 | 1433 | anisole, | 1341 | 1344 | 1359 | 1370 | anisole, | 1299 | 1306 | | LIT
REF | 50
50
28 | 28
50
50 | 500
500
500
500
500 | 50
50
50
50 | 50
50
50
50 | 50
50
50
50
50 | 50
50
50
50
50
50 | 28
28
50
50
50 | |---------------------------|--|---|--|---|--|---|--|--| | SAMPLE TYPE | standard
standard
standard
standard | standard
standard
standard
standard | standard
standard
standard
standard
standard | standard
standard
tap water
standard | standard
standard
standard
standard | standard
standard
standard
standard
standard
standard | standard
standard
standard
standard
standard | standard
standard
standard
standard
standard | | LEN CARRIER (m) GAS | 25 nitrogen s
25 nitrogen s
25 nitrogen s
50 hydrogen s | 50 hydrogen
25 nitrogen
25 nitrogen
25 nitrogen | 25 nitrogen
25 nitrogen
25 nitrogen
25 nitrogen
25 nitrogen
25 nitrogen | 25 nitrogen
25 nitrogen
50 helium
25 nitrogen | 25 nitrogen
25 nitrogen
25 nitrogen
25 nitrogen
25 nitrogen | 25 nitrogen | 25 nitrogen
25 nitrogen
25 nitrogen
25 nitrogen
25 nitrogen
25 nitrogen | 4 helium
50 hydrogen
25 nitrogen
25 nitrogen
25 nitrogen | | ID (mm) | 0.30
0.30
0.30
0.32 | 0.32
0.30
0.30
0.30 | 0.30
0.30
0.30
0.30
0.30
0.30 | 0.30
0.30
0.30 | 0.30
0.30
0.30
0.30
0.30 | 0.30
0.30
0.30
0.30
0.30 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | (80-100mesh) 3.00
0.32
0.30
0.30 | | COLUMN TYPE | wall-coated open tubular
wall-coated open tubular
wall-coated open tubular
bonded phase | bonded phase wall-coated open tubular wall-coated open tubular wall-coated open tubular | wall-coated open tubular | -coated
-coated
-coated | wall-coated open tubular | open
open
open
open
open | wall-coated open tubular | hromosorb W HP open tubular open tubular | | COLUMN MATERIAL | soda glass
soda glass
soda glass
quartz glass | quartz glass
soda glass
soda glass
soda glass | soda glass
soda glass
soda glass
soda glass
soda glass | glas
glas
tz gl | soda glass
soda glass
soda glass
soda glass | glas
glas
glas
glas
glas | 91 a g | soda glass
isomer
glass
quartz glass
soda glass
soda glass | | AN STATIONARY
IN PHASE | 4,5-trichloro
SE-30
SE-30
SE-30
OV-1 | 6-trichloro
OV-1
SE-30
SE-30
SE-30 | -dichloro
SE-30
SE-30
SE-30
-dichloro
SE-30
SE-30 | C. f-dichloro
GE SE-30
GE SE-30
OV-101
GE SE-30 | dr. | 4-dichloro
SE-30
SE-30
SE-30
SE-30
SE-30
SE-30
SE-30
SE-30 | oro | GE SE-30 butylated hydroxy ov-1 pentachloro AC OV-1 GE SE-30 GE SE-30 GE SE-30 | | LITP COLUMN INDEX ORIGIN | anisole, 2,4,9
1415 SGE
1429 SGE
1436 SGE
1494 SAC | SAC
SGE
SGE
SGE | anisole, 2, 4-c
1253 SGE
1269 SGE
anisole, 2,5-c
1244 SGE
1246 SGE |
ภัญญ ญ | SGE
SGE
SGE
SGE
SGE
9, 3, 4, | SGE | ് വരു വരു _{വരു} | 1093 SGE
anisole, buty
1d89 SAC
1690 SGE
1724 SGE
1741 SGE | | LIT | e e e | 26 | 28.0 | 6 | თ | n 0 | 0 | 56 | 7 | ∞ ⊣ | 56 | 56 | 56 | 56 | 44 | 44 | 56 | Z, |) | 19 | 19 | 44
56 | 56 | 23 | 19 | ,=4 | 33 | |----------------------------|----------------------|----------------------|--|--------------------------|--------------------------|-------|--------------------------|--------------
----------------------------|---|------------------------------|----------------------------|--------------|------------------------|------------------------|-------------------|--------------|---------------------------------|--------------------|---|------------------|-------------------------------------|---------------------|------------------------------|------------------|---------------------------|--------------------------| | SAMPLE TYPE | l oil | standard
standard | standard
standard | standard | standard | | standard | standard | standard | standard
standard | standard | standard | standard | standard | | tap water | standard | standard | | øtandard
øtandard | standard | tap water
standard | standard | standard
standard | standard | standard | standard | | LEN CARRIER (m) GAS | | | 50 hydrogen | | 24 helium | | nafortin oc | 12 | 4 helium | 50 nitrogen
4 helium | 12 | 12 | 12 | 12 | 25 helium | 25 helium | 12 | 12 | l
H | 4 helium | | 25 helium
12 | 12 | 15 helium
25 helium | | 4 helium | 50 | | (mm) | 3.00 | 0.20 | 0.20 | 0.30 | 0.30 | | 0.2.0 | 0.20 | 3.00 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | | | 0.20 | 0.20 |)
 | 3.00 | | 0.20 | 0.20 | 0.25 | | 3.00 | 0.23 | | | (80-100mesh) | | | | | | | | (80-100mesh) | (80-100mesh) | | | | | | | | | | (80-100mesh) | | | | | | (80-100mesh) | | | COLUMN TYPE | Δı | open | wall-coated open tubular
bonded phase | wall-coated open tubular | wall-coated open tubular | | waii-coated open tuburar | bonded phase | 3% w/w on Chromosorb W HP | wall-coated open tubular
3% w/w on Chromosorb W HP | bonded phase | bonded phase | bonded phase | bonded phase | | | bonded phase | bonded phase | 4 | 25%w/w on Celite
3% w/w on Chromosorb W HP | 25%w/w on Celite | bonded phase | bonded phase | wall-coated open tubular | 25%w/w on Celite | 3% w/w on Chromosorb W HP | wall-coated open tubular | | COLUMN MATERIAL | ם ם | ממ | quartz glass
quartz glass | n | glass | ο ; | quartz grass | quartz glass | le
glas <i>s</i> | quartz glass
glass | quartz glass | | quartz glass | quartz glass | | | quartz glass | quartz qlass | | glass | ממנטד | quartz glass | quartz glass | quartz glass
quartz glass | | glass | glass | | N STATIONARY N PHASE | 0V-1
0V-1
0V-1 | SE-30
Me silicone | 0V-1
0V-1 | 0V-1 | 0V-1 | • • | 26-30
2-methyl | Me silicone | 9,10-dicarbonitrile OV-1 g | 9, 10-dinyaro
SE-30
OV-1 | 9,10-dimethyl
Me silicone | 9-methyl
Me silicone | Me silicone | y-nitro
Me silicone | hydroxy
Me silicone | Me silicone | Me silicone | 9-carboxaldehyde
Me silicone | acid, methyl ester | | sE-30 | Me silicone
Me silicone | Me silicone | i. SE-30 Me silicone | SE-30 | OV-1 | 0V-1 | | LTP COLUMN
INDEX ORIGIN | H H H | 1713
1747 HP | 1750
1752 SAC | | 1758 | cene, | 1668
spthragene 2-m | | | anthracene, 9,1
1622
1662 | | anthracene, 9-m
1929 HP | | | sene,
HP | 1856 HP Me silice | 2107 HP | anthracene-9-ca
2183 HP | nilic | | 2088 | anthraquinone
1937 HP
1976 HP | anthrone
1945 HP | OKW SC
HP | 7 | 1556 | 1296
1296 | | SAMPLE TYPE | Ę, | rd. | rd | rd | Į. | rd | Į. | ğ | ial oil | rd
L | rd | rd | rd | • | מ | rd | rd
S | 1 | rd | 7 | Į. | rd | ter | rd | rd | rd
: | ביין
גיי | | rd | rd | rd | rd
in | <u> </u> | rd | rd | rd | Ţ | \$
1 | |---------------------|------------------|-------------------------|------------------|------------------|----------------------------|-------------------------|---------------------------------|---------------------------|---------------------------|--------------|--|------------------------|-------------------------|----------------|---------------------------------|----------------------------|--------------|-------------|-----------------------|---------------|--------------------|-------------|-------------|----------|----------|----------|-------------|-------------|-----------------|----------------|-------------|-------------|-----------------------------|----------------------------|--------|------------------------------|----------------------|------------------| | <i>8</i> 3 ∥ | standard essential | standard | | standard | standard | 1 | standard | standard | standard | | standard | ot on de | grandard | standard | tap water | standard | | | standard | atandard | | | CARRIER
GAS | _ | | | | 4 helium | helium | |) hydrogen | |) helium | | 2 | 4 helium | , | • | _ | 0.0 | | 5 helium | holium | 4 nellum | 3 helium | | | | |) helium | | | l helium | | 5 belium | | | | o nyarogen
O helium | 5 հայլստ | | | (m) | 3 50 | 3 50 | 3 50 | 3 50 | | 5 15 | 20 12 | 32 50 | | 30 50 | | | | c | ٤.۶ | | 27 50 | | 25 15 | | | 25 108 | | _ | | | 20 20 | | | (1) | | 50 25 | | | | 30 50 | 0.25 15 | | | OI (mm) | 0.23 | 0.23 | 0.23 | 0.2 | 3.00 | 0.25 | 0.20 | 0.32 | 0.30 | 0.30 | | 2.0 | 3.00 | | 2.0 | 0.27 | 0.27 | : | 0.25 | | 3.00 | 0.25 | | 0.5 | 0.20 | 0.20 | 0.40 | | . 0 | 3.18 | 0.27 | 0.50 | | | 0.30 | 0.30 | Ċ | 5 | | ы II | ù | tı. | ú | u | HP (80-100mesh) | U | | | | • | | (100-120 mesh) | HP (80-100mesh) | 000 | Chromosorb W BMDS (80-100 mesh) | | | | | 100m001 00 dn | | SH | : 4 | ħ | H | H | La 1 | 4 5 | 4 14 | ah) | | H | អ | Gas-Chrom Q (100-120 mesh) | | | | | | IN TYPE | ubula | tubular | ubula | tubular | rb W | ubula | | | | 4 | a inca | O mo: | | | HMDS | | | , q | } | 1 | N Q I | tubular (100-200 mesh) | tubular | tubular | tubular | com Q | | | Bravo) | Ġ | | COLUMN | open tubular | open t | open tubular | open t | Chromosorb W | open tubular | | | | 4 | o medo | as-Chr | on Chromosorb W | | sorb v | | | A. Kerbl | 5 | | on Chromosorb W HP | open t | | - | | | | open | | (100-2 | oben t | oben | open t | as-Chi | _ | | nil, | _ | | | wall-coated | wall-coated | wall-coated | wall-coated | 3% w/w on Ch | wall-coated | bonded phase | bonded phase | bonded phase | bonded phase | Waii-coaled open tubuian
bonded phase | 15% w/w on Gas-Chrom Q | W/W | | ő | | | (nronamide. | Ċ | 10 11 11 11 | × × | wall-coated | wall-coated | | -coated | | -coated | wall-coated | | lcoport | wall-coated | wall-coated | bonded phase
wall-coated | 15% w/w on G | | bonded phase
bonded phase | (chlorothalonil, | | | 11 ك | M | wa | W | W | 38 | Wê | ğ | ğ | ğ | ă i | žď | H | 38 | , | er
er | | | ([waaa | 74 | ř | ÷ | Ä | × | W | W | W | ž | א ספר בי | | | | ž , | Ď, ž | ä | Ă. | ă,ă | , - | i . | | OLUMN MATERIAL | | | | ; | thylphenyl)
ass | glass | glass | glass: | glass | glass | qlass | | | | | (e) | | -h11-2-111 | dlass |)
G | | | | glass | z glass | г дјазв | z glass | grass | borosilicate gl | O. | glass | | z glass
z glass | | | z glass
z glass | tetrachloro-1,3 | 1
1
1
7 | | COLUM | glass | glass | glass | glass | methyl
glass | quartz | quartz | quartz | quartz | quartz | glass
quartz | | qlass | | glass | ildenyde)
qlass | glass | glass | quartz | isomer | glass | חומש | glass | glass | quart | quart | quart | quart | boroa | stain | soda glass | glass | quartz | | quartz | quartz | , 6-tetr | | | STATIONARY
PHASE | | 4,6,8-trimethyl
OV-1 | 0V-1 | 0V-1 | 5-ethyl-5-(4-me
OV-1 gl | SE-30 | ailicone | ethyl
OV-1 | ov-1 | | ov-101
ov-1 | | 4-dimethylamino
OV-1 | troxy-3-methor | SE-30 gl | 4-methoxy (anisa
OV-101 | OV-101 glass | 7-101 | Chioro-N-(1,1
DB-1 | methyl | ov-1 | 01-101 | 0 | | ov-1 | | | | SE-30
OV-1 | SE-30 | | 0 | OV - 1
SE - 30 | | OV-1 | ov-1
ov-1 | trile, 2,4,5,6-tetra | | | | hy1 | 3-trin | | | | ci. SE | /lene
Me | dimethyl
OV-1 | б | ნ : | ර් ර් | S | 4-din | 4-hydroxy | SI | 4-met | б | ָר
ה | o-dici | N, N-diethyl | б | | | | б | б | 5 | 5 5 | 3 6 | 8 | ō | S | 5 6 | ខេ | 5 | 55 | dicarbonitrile, | 3 | | COLUMN | 1-methy | | | 6 | cic acid, | zine
J&W Sci | naphthy
HP | sAC | shyde
Hall | Hall | Hall | | ehyde, | shyde, | | shyde, | | | | | | a dro | Sunelco | 1 | | | | ç | 7 t | H | PEC | | Hall | | Hall | SAC
Hall | | | | LTP
INDEX | azulene,
1401 | azulene,
1638 | azulene,
1400 | azulene,
1410 | barbituri
2085 | benactyzine
2235 J&W | benzacenaphthylene
2055 HP M | benzacridine,
2676 SAC | benzaldehyde
0929 Hall | 0929 | 0947 | 0961 | benzaldehyde, | benzaldehyde, | 1447 | benzaldehyde,
1236 | 1238 | 1240 | benzamide,
1760 | benzamide, | 1571 | benzene | 0642 | 0645 | 0646 | 0646 | 0646 | 0649 | 0650 | 0654 | 0655 | 0655 | 0658 | 0664 | 1990 | 0669 | benzene | 1011 | | LIT | 7 | നഹന | 14 | 14 | 2 | m | יטורי | , | 14 | 7 0 | n kn | m | 14 | (" | m | 5 | , | N 6 | יט נר | 14 | m | 80 | 32 | 28 | | 4. | n | n m | | 78 |) et | o LO | 38 | 4 | 4.
V | 2 | 14 | ო | 5 23 | |---------------------|------------------|--|--------------------------|----------|--------------------------|--------------|--|-------------|------------|--------------------------|--------------------------|---------------|--------------------------|----------------|--------------|--------------------------|-------------------|--------------------------|--------------------------|----------|---------------|--------|--------------------------|------------------------|----------------|--------------------------|--------------------------|--------------|------------|------------------------------|--------|--------------------------|----------|---|----------------|--------------------------|--------------------------|--------------|--| | SAMPLE TYPE | | standard
tap water
essential oil | standard | standard | standard | | essential oil
tap water | | standard | standard | tan water | essential oil | standard | esaportial oil | | tap
water | • | standard | scandard
tan water | standard | essential oil | - | standard | standard | | standard | tap water | | | standard
pegential ail | | tap water | standard | 7 | scandard | standard | standard | standard | tap water
standard | | LEN CARRIER (m) GAS | 108 | 50 helium
50 helium | | 25 | 108 | 20 | | 1 | 25 helium | 100 | 3 | | 25 helium | 50 helium | 20 | | , | 0 108 helium | | | 20 | 20 | 100 hellum | 2 50 hydrogen | |) 25 helium | KO holium | 20 | i | 50 hydrogen | 20 | | 2 | 14 helding | | 108 helium | 25 helium | 50 helium | 108 helium | | ID
(mm) | 0.25 | 0.30 | 0.5 | 0.50 | 0.25 | 0.3 | 9.0 | ì | 0.50 | 9.0 | 5 | 0.30 | 0.50 | 0.30 | 0:30 | | (| 0.23 | 5. | 0.50 | 0.30 | 0.20 | 0.0 | 0.32 | | 0.50 | 0.0 | 0.30 | , | 0.32 | 0.30 | | 2.0 | 20 | | 0.25 | 0.50 | 0.30 | 0.25 | | COLUMN TYPE | | bonded phase
wall-coated open tubular
bonded phase | wall-coated open tubular | | wall-coated open tubular | bonded phase | bonded phase
wall-coated open tubular | | oben | Wall-Coared open cubular | wall-coated open tubular | | wall-coated open tubular | honded phase | bonded phase | wall-coated open tubular | | wall-coated open tubular | wall-coated open tubular | oben | bonded phase | oben | Wall-Coated open tubular | bonded phase | | wall-coated open tubular | Wall-Coated open tubular | bonded phase | | bonded phase
bonded phase | | wall-coated open tubular | | phonyl] (tedion) | | wall-coated open tubular | wall-coated open tubular | bonded phase | Wall-coated open tubular
Wall-coated open tubular | | COLUMN MATERIAL | | tz glass
18
tz glass | | 1 60 | | <u>6</u> | tz giasa | ı | 0 1 | 7 | ta yrass | tz glass | | +7 (1) | , 5 | | | 1 | 1.2 y1.433 | ı va | tz glass | | o | tz glass | | 5 0 - | | 9.4 | • | | 4 4 | 1 | | orophenyl)sul | , | 0 1 | ø | tz glass | ec | | COI | glass | quartz
glass
quartz | glass | qlass | glass | quartz | quartz | i
i
n | glass | grass | קנפור
קומור ה | quartz | glass | , tre 100 | quartz | glass | , | glass | quartz | qlass | quartz | quartz | grass | quartz | | glass | grass | quartz | | quartz | quartz | glass | | 4-chlore | 1 | glass | glass | quartz | glass
glass | | STATIONARY
PHASE | eth
O | SP-2100
OV-1
OV-1 | 4-tetramethyl
SE-30 | SE-30 | OV-101 | ov-1 | OV-1
SP-2100 | 'n | SE-30 | OV-101 | SP-2100 | | SE-30 | 2,3-trichloro | OV-1 | SP-2100 | 1, 2, 3-trimethyl | 00-101 | SP-2100 | SE-30 | ov-1 | SE-30 | SE-30 | ,5-tetrachioro
OV-1 | ,5-tetramethyl | SE-30 | | 0V-1 | -trichloro | 01/2-1 | ov-1 | SP-2100 | SE-30 | 1, 2, 4-trichloro-5-[(4-chlorophenyl) sulphonyl] DR-1 DR-1 honder | 1,2,4-triethyl | OV-101 | 1,2,4-trimetnyi
SE-30 | ov-1 | SP-2100
OV-101 | | COLUMN | | i,i-ur
Hall
Supelco
Hall | 1,2,3, | | Quadrex | Hall | Hail | 3 | , | Quadrex | gunelgo | Hall | | 1, | Hall | Supelco | | Quadrex | Supelco | | Hall | | • | 1, 2, 4
SAC | 1,2,4 | | Superco | Hall | 1,2,4 | SAC | Hall | Supelco | | | | OI. | | Hall | Supelco
Quadrex | | LTP | benzene,
1275 | Denzene,
1148
1148
1148 | benzene, | 1126 | 1133 | 1137 | 1137 | benzene, | 1098 | 1103 | 1106 | | | benzene, | | 1189 | benzene, | 1004 | 1005 | 1005 | 1005 | 1009 | 1011 | benzene,
1301 | benzene, | | 1103 | | penzene, | 1150 | 1154 | 1154 | 1186 | benzene, | benzene, | 1223 | penzene,
0975 | 1160 | 0977
0977 | | 0 E | .30
.20 | 18 3
00 | 32
30 | 5 | .50
.20 | 2000
2000
2000
2000
2000 | 5 1 | .50
.25 1
.30
.50 | 50 | 50
25 1
30
30 | .50 | 20 | |----------|--|-------------------------|---|-----------|-------------------------------------|---|----------------------------|--|-----------|---|--------------------|--------------------| | G (II) | 000 | 3.18 | 000 | 0 | 000 | 0000000 | 0.5 | 0.50
0.25
0.30
0.50 | 0 | 0.50
0.25
0.30
0.30 | 0.50 | 0.20 | | | | (80-100mesh) | | | | | | | | | | | | UMN TYPE | tubular
tubular | -200 mesh)
sorb W HP | tubular | tubular | tubular
tubular
tubular | tubular
tubular
tubular
tubular
tubular | tubular
tubular | tubular
tubular
tubular
tubular | tubular | tubular
tubular
tubular | tubular
tubular | tubular
tubular | | COLUMN | e
 open
 open | (100
hromo | e
e
copen
e | open | uedo
obeu | uedo
e
e
e
e
e
e | open | open
open
open | open | open
open
e | open | open | | | bonded phase
wall-coated
wall-coated | pelcopor
w/w on | bonded phase
bonded phase
wall-coated
bonded phase | 11-coated | 11-coated
11-coated
11-coated | wall-coated bonded phase bonded phase wall-coated wall-coated wall-coated wall-coated wall-coated wall-coated wall-coated wall-coated | wall-coated
wall-coated | wall-coated wall-coated wall-coated bonded phase wall-coated | 11-coated | wall-coated wall-coated bonded phase wall-coated bonded phase | ll-coated | wall-coated o | | | W W W | 3%
3% | d w d | wall | wall
wall | wall-
bonde
wall-
wall-
wall-
wall- | wall
wall | wall
wall
bond | wall | wall-
wall-
bonde
wall- | wall
wall | wall wall | quartz glass quartz glass quartz glass glass OV-1 SE-30 Me silicone SE-30 SE-30 quartz glass glass quartz glass glass qlass 1,2-dimethyl-4-ethyl penzene, SE-30 SE-30 benzene, 1,2-dimethyl-3-vinyl SE-30 1431 1097 OV-1 Supelco Hall Quadrex benzene, 1082 1087 1090 Si glass glass glass OV-101 SP-2100 glass 1,2-dimethy1-3-ethyl SE-30 quartz glass OV-101 OV-1 SP-2100 quartz 1,2-dimethyl-4-vinyl benzene, 1100 00-1 Supelco Quadrex 1066 1068 1070 1070 1070 Hall SE-30 , 1,2-dimethylpropyl Quadrex OV-101 penzene, 1069 glass oil helium helium helium tap water standard essential standard standard standard standard helium helium helium helium 50 50 108 50 50 50 50 25 25 25 25 25 tap water standard standard nitrogen nelium nelium oi1 tap water essential standard helium helium nelium helium 50 25 standard standard helium helium 25 108 7 standard 25 108 20 standard standard helium oil tap water essential standard standard standard helium helium 25 108 50 standard 2 8 നനന essential oil helium helium 50 tap water standard 14 8 32 standard standard standard nitrogen helium 25 50 00 helium oi1 hydrogen helium 50 standard essential tap water standard tap water standard helium helium helium 50 25 100 LIT REF SAMPLE TYPE CARRIER GAS LEN (m) COLUMN MATERIAL STATIONARY PHASE COLUMN quartz glass quartz glass 1,2,4-trimethyl (cont) benzene, SE-30 SE-30 oil essential standard helium nitrogen : helium : 50 50 standard standard standard helium helium 3.1 stainless steel SE-30 , 1,2-dibromo HP SE-3 benzene, 0985 0984 1216 1221 0.7 1,2-dichloro enzene, glass quartz glass quartz glass quartz glass glass glass Me silicone SE-30 1031 glass OV-1 SP-2100 OV-1 Supelco Hall 1007 1009 1009 1009 Hall quartz glass benzene, 1,2-diethyl 1043 SE-30 1047 SE-30 1052 SE-30 glass glass (o-xylene) quartz glass glass quartz glass quartz Quadrex 0874 0874 0875 0875 0876 0879 0879 Supelco Hall Hall 0871 0871 penzene, 0871 glass glass glass quartz quartz quartz glass 1,3,5-trichloro Supelco SP-2100 benzene, Supelco $\frac{1113}{1113}$ SE-30 1,2-diviny1 benzene, 1102 | LIT | 14
2 | 14 | 14 | ດຕ | n m | σ, | თσ | 0 01 | σι | 32 | , | 88
11 | ď | o m | m | Ŋ | 32 | 1.4 | . 2 | S | ന | ထင္ | 32 | R | ო | က | 14 | 7 | cr | υ | ო | ~1 | 35 | 77 | 8 | 14 | ഹ | ოო | | |-----------------------|--|-----------------------------|---------------------|--------------------------|------------------------------|---|--------------------------|----------|----------|--------------------------------|---------|---|----------------------------------|---------------|---------|--------------------------|--------------------------
--|----------|---------|---------------|---------------|--------------------------|--|---------------|--------------|--------------------------|--------------------------|--------------------|--------------------------|---------------|--------------------------|--------------------------|--------------------------|----------|-----------------------------|--------------------------|------------------------------|---| | SAMPLE TYPE | standard
standard | standard | standard | tap water
stondord | essential oil | standard | standard | standard | standard | standard | 5415 | standard
standard | 70
30
70
60
60
60 | easential oil | | tap water | standard | בות מונית | standard | н | essential oil | standard | grandard | tap water | essential oil | standard | standard | standard | ם
הייה
הייה | tap water | essential oil | standard | standard
tan water | standard | standard | standard | | essential oil
standard | | | LEN CARRIER) (m) GAS | 0 25 helium
5 108 helium | 0 25 helium | 0 25 helium | o KO helium | 20 | 25 | 20 50 helium | 108 | 30 | 5 100 helium
20 50 mitroden |) | 8 3.1 helium
0 4 helium | ď | | 20 | | 100 helium | 0 25 halium | 108 | | 20 | 0 50 nitrogen | 707 | | 20 | 0 50 helium | 0 25 helium | 5 108 helium | 0 50 helium |)
) | | 108 | - | 25 | 20 | 0 25 helium | i | 0 50 helium
0 50 helium | | | ID
(mm) | 0.50 | 0.50 | 0.50 | 0 | 0.30 | 0.30 | 0.20 | 0.2 | 0.3 | 0 0 | | 3.18
h) 3.00 | 0 | 0.30 | 0.30 | | 0.5 | 0 | 0.25 | ! | 0.30 | 0.20 | o. | | 0.30 | 0.30 | 0.50 | 0.25 | 0.30 | | 0.30 | 0.25 | 0.5 | 0.50 | 0.20 | 0.50 | , | 0.30 | | | COLUMN TYPE | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | open | wall-coated open tubular | bonded phase
bonded phase | oben | wall-coated open tubular | open | oben | wall-coated open tubular | | Supelcoport (100-200 mesh) 3% w/w on Chromosorb W HP (80-100mesh) | | bonded phase | | wall-coated open tubular | wall-coated open tubular | and the state of t | i edo | oben | 60 | oben | wall-coated open tubular | wall-coated open tubular | | bonded phase | wall-coated open tubular | wall-coated open tubular | מפפינת הסטינה | wall-coated open tubular | | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | obeu | wall-coated open tubular | wall-coated open tubular | bonded phase
bonded phase | | | MN MATERIAL | | | | | z glass
z glass | | z glass | | | 7 | z grass | less steel | , | 5 | z grass | | | | | | .1 | LT. | | - | z glass | | | | | 9.446 | z glass | 1 | | | z glass | | | z glass
z glass | | | COLUMN | glass
glass | glass | glass | glass | quartz | qlass | quartz | glass | glass | glass | quartz | stainless
glass | , | quartz | quartz | qlass | glass | | grass | grang | quartz | quartz | glass | glass | quartz | quartz | glass | glass | ene) | quar.c. | quartz | glass | glass | glass | | | glass | quartz | , | | STATIONARY
PHASE | -triethyl
SE-30
x OV-101 | 1,3,5-triisopropyl
SE-30 | -trimethyl
SE-30 | SP-2100 | 0V-1 | 0V-1 | 0V-1 | OV-1 | 0V-1 | SE-30 | SE-30 | -dibromo
SE-30
OV-1 | -dichloro | 00-1 | 0.4-1 | SP-2100 | SE-30 | $\tilde{\tilde{z}}$ | SE-30 | | | | SE-30 | 1,3-d16tny1-3-metny1
unelto SP-2100 | | OV-1 | 1,3-diisopropyl | | nethyl, (m-xylene) | SP-2100 | ov-1 | OV-101 | SE-30 | Me SILICORS | SE-30 | 3-dimethyl-2-ethyl
SE-30 | SP-2100 | ov-1
ov-1 | : | | COLUMN | 1,3,5-t
Quadrex | 1, 3, 5-t | 1,3,5-t | Supelco | Hall
Hall | 7 | | 7.0 | Chanter | | • | I, 3
HP | 1,3 | SAC | Hall | Supelco | 4 | 1,3-diethyl | | Supelco | Hall | | | U. | Hall | = | | Quadrex | 1,3-dimethyl, | Supelco | Hall | Quadrex | : | 井 | | , 1,3-dim | Supelco | Hall
Hall | 1 | | LTP | benzene,
1158
1206 | benzene,
1495 | benzene,
0952 | 0952 | 0952 | 0953 | 0953 | 0953 | 0953 | 0929 | 0960 | benzene,
1190
1197 | benzene, | 0981 | 0982 | 0.982 | 1017 | benzene, | 1032 | 1033 | | | 1038 | benzene, | | 1130 | benzene, | 1139 | benzene, | 0849 | 0849 | 0852 | 0854 | 0858 | 0864 | benzene,
1070 | 1076 | 1076 | • | | LIT
REF | ጠ
44 ማ ພ ሊ ພ | 17
2
3
3
3 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 1 20 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 14
2
3
3
3
3
3 | 1.
2. 6. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. | 3 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | |-----------------------------|--|--|--|---|--|--|--| | SAMPLE TYPE | standard
standard
standard
tap water
essential oil | standard
standard
tap water
essential oil | standard
standard
standard
standard | standard standard tap water standard essential oil standard tap water | standard standard standard tap water standard standard | standard standard atandard tap water essential oil standard | standard tap water standard standard standard standard standard standard | | D LEN CARRIER
n) (m) GAS | 0.50 25 helium
0.25 108 helium
0.30 50 helium
0.30 50 helium | 0.50 25 helium
0.25 108 helium
0.30 50 helium | 25
25
25
50 | 3.00 4 helium 0.32 50 hydrogen 0.30 50 helium 0.30 50 helium 0.31 50 helium 0.5 100 helium | 0.50 25 helium 0.25 108 helium 0.30 50 helium 0.30 50 helium 0.20 50 nitrogen 0.5 100 helium | | 0.5 100 helium 25 helium 0.50 25 helium 0.20 50 nitrogen 0.27 50 0.27 50 0.27 50 2.0 2 2.0 2 0.50 25 helium 0.25 108 helium | | OI (mut) | 0.50
0.25
0.30 | 0.50
0.25
0.30 | 0 000 | (80-100mesh) 3.
0.
0. | 666 666 | | | | COLUMN TYPE | wall-coated open tubular wall-coated open tubular bonded phase wall-coated open tubular bonded phase | wall-coated open tubular
wall-coated open tubular
wall-coated open tubular
bonded phase | 1-coated open tubula
1-coated open tubula
1-coated open tubula
1-coated open tubula | 3% w/w on Chromosorb W HP 25%w/w on Celite bonded phase wall-coated open tubular bonded phase bonded phase wall-coated open tubular | wall-coated open tubular wall-coated open tubular bonded phase wall-coated open tubular bonded phase wall-coated open tubular wall-coated open tubular | open
open
open | wall-coated open tubular wall-coated open tubular wall-coated open tubular 15% w/w on Gas-Chrom Q (100-120 mesh) wall-coated open tubular wall-coated open tubular | | COLUMN MATERIAL | glass
glass
quartz glass
glass
quartz glass | glass
glass
glass
quartz glass | glass
glass
glass
quartz glass | glass
quartz glass
glass
quartz glass
quartz glass | glass
glass
quartz glass
glass
quartz glass
quartz glass | glass
glass
nne)
quartz glass
glass
glass | glass
glass
glass
glass
glass
glass | | STATIONARY
PHASE | sthyl-4-ethyl
SE-30
ov-101
ov-1
sP-2100
ov-1 | sE-30
CV-101
SP-2100
OV-100
SP-2100
OV-1 | 30
30
30
30
30 | romo
OV-1
N10ro
SE-30
OV-1
SP-2100
OV-1
SE-30
Me silicone | sthy1
SE-30
OV-101
OV-1
SP-2100
OV-1
SE-30 | isopxopyl
SE-30
OV-101
Methyl,
(p-xyle
OV-1
SP-2100
OV-1
OV-1 | SE-30 Me silicone SE-30 SE-30 OV-101 OV-101 SE-30 methyl-2-ethyl SE-30 OV-101 | | LTP COLUMN INDEX ORIGIN | OHNH | O S H | | benzene, 1,4-dibromo
1193
benzene, 1,4-dichloro
0913
0985 SAC OV-1
0988 Supelco SP-2
0988 Hall OV-1
0998 Hall SE-3 | benzene, 1,4-diethyl
1037 SE-
1039 Quadrex OV-
1041 Hall OV-
1041 Supelco SP-
1041 Hall OV-
1042 SE-
1043 SE- | • •
О жано | HP
6, 1, | | 82 | |------| | page | | LIT
REF | សេយស | 14 | ω. | 14
8 | 8
14 | 28 | 28 | 28 | 28 | សកក | 32 | 32 | en (| 3 6 | ت | 32
32 | œ | 14
8 | 8 | 8 | ស | m m | 14 | 32.8 | | 114
8 | |-------------------------|--|----------------------------------|--------------------------|--|--|------------------------------------|--------------|--------------|------------------------------|--|--------------------------|---------------------------------|---------------|--|-----------|--|--------------|---|-------------|--------------------------|-----------|------------------------------|--------------|--|-------------------|--------------------------------| | SAMPLE TYPE | tap water
essential oil
standard | standard | standard | standard
standard | standard
standard | standard | standard | standard | standard | tap water
standard
essential oil | standard | standard | essential oil | standard
standard | tap water | standard
standard | standard | standard
standard | standard | standard | tap water | standard
essential oil | | standard
standard | | | | LEN CARRIER (m) GAS | 50 helium
108 helium | 25 helium | 50 nitrogen | 25 helium
50 nitrogen | 50 nitrogen
25 helium | 50 hydrogen | 50 hydrogen | 50 hydrogen | 50 hydrogen | 50 helium
50 helium | 100 helium | 100 helium | | 108 helium
50 helium | | 25 hellum
100 hellum | 50 nitrogen | 25 helium
50 nitrogen | 108 helium | 108 helium | | 50 helium
50 helium | | 100 hellum
50 nitrogen | | 0 00 | | ID L | 0.30 | 0.50 | 0.20 | 0.50 | 0.20 | 0.32 | 0.32 | 0.32 | 0.32 | 0.30 | 0.5 1 | 0.5 | | 0.25 | | 0.50 | 0.20 | 0.50 | 0.25 1 | 0.25 1 | , | 0.30 | 20 | 0.20 | | 0.20 | | COLUMN TYPE | wall-coated open tubular
bonded phase
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | bonded phase | bonded phase | bonded phase | bonded phase | wall-coated open tubular
bonded phase
bonded phase | wall-coated open tubular | wall-coated open tubular | | wall-coated open tubular
bonded phase | oben | wall-coated open tubular
wall-coated open tubular | open | wall-coated open tubular wall-coated open tubular | -coated | wall-coated open tubular | | bonded phase
bonded phase | -coated open | wall-coated open tubular
wall-coated open tubular | 4 4 | open | | COLUMN MATERIAL | (cont)
glass
quartz glass
glass | glass | quartz glass | glass
quartz glass | quartz glass
glass | quartz glass | quartz glass | quartz glass | quartz glass | lyl
glass
quartz glass
quartz glass | glass | qlasa | quartz glass | glass
Guartz glass | 1 | glass
nlass | quartz glass | glass
quartz qlass | 1 | വിക്ഷ | | quartz glass | ,
, | glass
martz dlass | 1
1
1
10 | giass
glass
quartz glass | | STATIONARY
PHASE | 1-2-ethyl (
2100 g
1
101 g | 30 | -2-methyl
SE-30 | -3-methyl
SE-30
SE-30 | | 1-chloro-2,4-dinitro
SAC OV-1 q | | | 1-chloro-4-nitro | 2,3,5-trimethy
SP-2100
OV-1
OV-1 | | 1-ethyl-2, $5-dimethyl$ $SE-30$ | ¥l | OV-101 9 | 100 | SE-30 9 | | -2-vinyl
SE-30
SE-30 | propyl
1 | -3-methyl | SP-2100 | ov-1 | 0 | SE-30
SE-30 | -3-vinyl | SE-30
SE-30
SE-30 | | LTP COLUMN INDEX ORIGIN | _ a = o | benzene, 1,4-divinyl
1096 SE- | benzene, 1-allyl
1041 | -allyl | benzene, 1-allyl
1033
1033 | ಭ | | | benzene, 1-chlor
1193 SAC | SHH | benzene, 1-ethyl
1070 | benzene, 1-ethyl | e, 1
Ha | 0961 Quadrex | | 0963 | 8960 | benzene, 1-ethyl
1086
1091 | ,
O | a | | 0946 Hall | | 0949 | benzene, 1-ethyl | 1064
1064
1066 | | LIT
REF | 32
32
8 | 14
14
8 | 14 | 122 | 9 8 8
9 4 9 | 14 | 14 | 8
14 | 6 6 6
6 6 | 14. | 14 | 14
8 | 6E | 39 | 14
32 | 14 | |--|--|--|---|---|----------------------|--------------------------|---|--|--|------------------------------------|--|--|----------|--|--|--| | SAMPLE TYPE | tap water
standard
essential oil
standard
standard | standard
standard
standard | standard
standard | standard
standard | standard
standard | standard | standard
standard | standard
standard | standard | standard
standard | standard
standard | standard
standard | standard | standard | standard
standard | standard
standard | | ID LEN CARRIER (mn) (n) GAS | 0.30 50 helium
0.30 50 helium
0.50 25 helium
0.5 100 helium
0.20 50 nitrogen | .50 25
.50 25
.20 50 | 0.25 108 helium
0.50 25 helium | 0.30 25 nitrogen
0.50 25 helium | .0 2.9
.18 3.1 | 0.50 25 helium | 0.50 25 helium
0.25 108 helium | 0.20 50 nitrogen
0.50 25 helium | 3.18 3.1 helium | .50 25
.25 108 | 0.50 25 helium
0.25 108 helium | 0.50 25 helium
0.20 50 nitrogen | | 3.18 3.1 helium | 0.50 25 helium
0.5 100 helium | 0.50 25 helium
0.25 108 helium | | COLUMN TYPE | wall-coated open tubular
bonded phase
bonded phase
wall-coated open tubular
wall-coated open tubular
wall-coated open tubular | <pre>wall-coated open tubular wall-coated open tubular wall-coated open tubular</pre> | wall-coated open tubular | wall-coated open tubular wall-coated open tubular | Ó | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | Supelcoport (100-200 mesh) | | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | | Supelcoport (100-200 mesh) | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | | COLUMN MATERIAL | glass
quartz glass
quartz glass
glass
qlass | glass
glass
quartz glass | glass
glass | quartz glass
glass | | glass | glass
glass | quartz glass
glass | stainless steel | | glass
glass | glass
quartz glass | _ | stainless steel | glass
glass | glass
glass | | LTP COLUMN STATIONARY INDEX ORIGIN PHASE | . 1-ethyl-4-methyl
Supelco SP-2100
Hall OV-1
SE-30
SE-30
SE-30 | benzene, 1-ethy1-4-viny1
1072 SE-30
1072 SE-30
1073 SE-30
benzene, 1-ethy1propy1 | Quadrex OV-10
1-isopropyl-3
SE-30 | Denzene, 1-180propyr-4-viny,
1006 SGE SE-30
1137 SE-30
benzene, 1-methyl-2-bromo | H , | -, - | Denzene, 1-metny1.2-propy1
1046 SE-30
1050 Quadrex OV-101 | _ | Denzene, 1-methyl-3-10do
1033 HP SE-30
Denzene, 1-methyl-3-10do
1148 HP SE-30 | e, 1-methyl
Quadrex
1-methyl | ຸ ວ | | , III | 1182 HP SE-30
benzene, 1-methyl-4-isopropyl | - | O. | | LIT
REF | 14
14
8 | 14 | 14
2
3 | നന | 8 | 7 | 14 | 14 | 14 | 7 | 14 | 28 | 28 | 28 | 39 | 7 | 7 | 28 | 28 | 1 | 39 | നനാല | |-----------------------------|--|--|--|--|--------------------------------------|--|--|--------------------------|--|-------------------------------------|--|------------------------------|-------------------------------|-------------------|----------------------------|---------------------------------|----------------------------------|--------------------------|-------------------|--------------------------------|----------------------------|---| | SAMPLE TYPE | standard
standard
standard | standard
standard | standard
standard
standard | tap water
essential oil | standard | standard | standard
standard | standard | standard
Standard | standard | standard
standard | standard | . standard | standard | standard | standard | standard | ı standard | ı standard | standard | standard | essential oil
standard
tap water | | LEN CARRIER (m) GAS | 25 helium
25 helium
50
nitrogen | 25 helium
5 108 helium | 25 helium
5 108 helium
5 50 helium | o 50 helium | 5 108 helium | 5 108 helium | - | 0 25 helium | 0 25 helium
5 108 helium | 5 108 helium | 0 25 helium
5 108 helium | 2 50 hydrogen | 2 50 hydrogen | 2 50 hydrogen | 8 3.1 helium | 5 108 helium | 5 108 helium | 2 50 hydrogen | 2 50 hydrogen | 0 4 helium | 8 3.1 helium | 0 50 helium
0 50 helium | | ID (mm) | 0.50
0.50
0.20 | 0.50 | 0.50
0.25
0.30 | 0.30 | 0.25 | 0.2 | 0.50 | 0.50 | 0.50 | 0.2 | 0.50 | 0.32 | 0.32 | 0.32 | 3.1 | 0.2 | 0.25 | 0.32 | 0.32 | (80-100mesh) 3.00 | 3.18 | 0.30 | | COLUMN TYPE | wall-coated open tubular
wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular
bonded phase | wall-coated open tubular
bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | bonded phase | bonded phase | bonded phase | Supelcoport (100-200 mesh) | wall-coated open tubular | wall-coated open tubular | bonded phase | bonded phase | 3% w/w on Chromosorb W HP (80- | Supelcoport (100-200 mesh) | bonded phase
bonded phase
wall-coated open tubular | | COLUMN MATERIAL | glass
glass
quartz glass | glass
glass | glass
glass
quartz qlass | | glass | glass | iyi
glass
qlass | glass | glass
glass | glass | glass
glass | quartz glass | quartz glass | quartz glass | stainless steel | glass | glass | quartz glass | quartz glass | ı
glass | stainless steel | thyi
quartz glass
quartz glass
glass | | UMN STATIONARY
GIN PHASE | γ1
S
S | <pre>1-methylbutyl SE-30 uadrex OV-101</pre> | V. | 1co SP-2100
OV-1 | 1-t-butyl-2-methyl
guadrex OV-101 | l-t-buryi-3,4,3-trimediryi
juadrex OV-101 glasi | 1-t-buty1-3,3-aimetnyi
SE-30
g | SE-30 | 1-t-buty1-3-methy1
SE-30
wadrex OV-101 | 1-t-butyl-4-ethyl
Nuadrex OV-101 | 1-t-buty1-4-methy1
SE-30
puadrex OV-101 | 2,3-dichloronitro
AC OV-1 | 2,4-dichloronitro
SAC OV-1 | 2,5-dichloronitro | 2-dilodo
IP SE-30 | 2-methylbutyl
juadrex OV-101 | 2-methylpentyl
Quadrex OV-101 | 3,4-dichloronitro | 3,5-dichloronitro | 3-amino-1,2-dimetnyi
OV-1 | 3-d110d0
P SE-30 | benzene, 3-ethyl-1,2,4-trimethyl
1185 Hall 0V-1 qu
1185 Hall 0V-1 qu
1185 Supelco SP-2100 gl | | LTP COLUMN
INDEX ORIGIN | benzene, 1-m
0978
0978
0978 | , o | , o= | : 02 22 | | | benzene, 1-t-bul
1152
1163 Ausdrey | K | 0 | benzene, 1-t-but
1166 Quadrex | benzene, 1-t-but
1072
1076 Quadrex | benzene, 2,3
1344 SAC | Ω | Ω | Ξ, | | benzene, 2-methy
1191 Quadrex | benzene, 3,4
1339 SAC | 93 | | benzene, 3-d
1431 HP | benzene, 3-ethy
1185 Hall
1185 Hall
1185 Supelco | | LIT
REF
=== | 9 23 75 | 39 | 14
8 | 39 | 14 | ကတေ | 'n | ന്ധ | mα | 32 |
 | m | ĸ | in N | 28 | E 7 | 32 | ထ ဆ
လ | . 6° | 28 | 4.8
2.8 | 7 | 2 | 39 | 3
3
14
14 | |-----------------------------|--|------------------------------|--|----------------------------|--|------------------------------|------------------------------|----------------------------|----------------|--------------|--------------------------|----------------|------|--|------|----------------------------------|--------------|---|---------------------------------------|------------|--|--------------------------------------|--------------------------|----------------------------|--| | SAMPLE TYPE | standard
tap water
essential oil | standard | standard
standard | standard | standard
standard | tap water
standard | essential oil | essential oil
tap water | | | standard | essential oil | | tap water
standard | | standard | | standard
standard | standard | standard | standard
standard | standard | standard | standard | essential oil
standard
standard
tap water
standard | | ID LEN CARRIER (mm) (m) GAS | 0.25 108 helium
0.30 50 helium | 3.18 3.1 helium | 0.50 25 helium
0.20 50 nitrogen | 3.18 3.1 helium | 0.50 25 helium
0.25 108 helium | 0.20 50 nitrogen | | 0.30 50 helium | 0.30 50 helium | 100 | 3.16 3.1 neilum
2.0 2 | 0.30 50 helium | 20 | | 50 | 0.30 50 hellum
0.50 25 hellum | 100 | 0.20 50 nitrogen
2.0 2 | 3.18 3.1 helium | 50 | 0.22 25 hydrogen
0.32 50 hydrogen | 0.25 108 helium | 0.25 108 helium | 3.18 3.1 helium | 0.30 50 helium 0.25 108 helium 0.30 50 helium 0.50 25 helium | | COLUMN TYPE | wall-coated open tubular
wall-coated open tubular
bonded phase | Supelcoport (100-200 mesh) | wall-coated open tubular
wall-coated open tubular | Supelcoport (100-200 mesh) | wall-coated open tubular | open tubular
open tubular | bonded phase | bonded phase | | open tubular | 0-120 mesh) | bonded phase | , | wall-coated open tubular
wall-coated open tubular | | bonded phase | open tubular | wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | , , , , , , , , , , , , , , , , , , , | ed phase | wall-coated open tubular
bonded phase | wall-coated open tubular | wall-coated open tubular | Supelcoport (100-200 mesh) | bonded phase wall-coated open tubular bonded phase wall-coated open tubular wall-coated open tubular | | COLUMN MATERIAL | ass
ass
artz glas | stainless steel | glass
quartz glass | യ | glass
glass | glas | quartz glass | quartz glass
glass | quartz glass | | stainless steel | quartz qlass | glas | glass
glass | glas | quartz glass | | quartz glass | stainless steel | | quartz glass
quartz glass | glass | glass | stainless steel | quartz glass
glass
quartz glass
glass
glass | | STATIONARY
PHASE | buty1
OV-101
SP-2100
OV-1 | lo
SE-30 | SE-30
SE-30 | SE-30 | SE-30
OV-101 | SP-2100
SE-30 | I-00 | OV-1
SP-2100 | OV -1 | SE-30 | SE-30
SE-30 | 0.00 | ov-1 | SP-2100
OV-101 | ov-1 | OV-1
SE:30 | SE-30 | SE-30
SE-30 | SE-30 | (HCB
-1 | CP Sil 5CB
OV-1 | 1y1
0v-101 | :hyl
OV-101 | SE-30 | OV-1
OV-101
OV-10
SP-2100
SE-30 | | LTP COLUMN
INDEX ORIGIN | O 03 EE | benzene, 4-diiodo
1412 HP | benzene, allyl
0929
0934 | ,
H | benzene, butyl
1037
1040 Ouadrex | | 1041 Hall
benzene, chloro | 0820 Hall | | | 0839 HP
0844 | benzene, ethyl | | 0840 Supelco
0843 Quadrex | | 0848 Hall | 0820 | 0854
0859 | benzene, fluoro
0664 HP | a) (1 | 1662 CHRONPAK CP
1680 SAC OV | benzene, hexaethyl
1682 Quadrex Ö | | ж, | Denzene, 1sobutyl
0992 Hall
0992 Quadrex
0992 Hall
0992 Supelco | | LIT
REF | ოსო | 1 4
2 4 4 | 3.88 | ; m | ოო | ოო | 61 | ით | 010 | n on | 32 | 3.7 | • œ | 9
8
8 | 28 | | 8 | 2 | 2 | 8 | N | 81 | 28 | ოო | ιΩ | 49 | 8 6 | ഗസ | |--------------------------------|--|--|---|--------------|----------------------------------|----------------------------------|--------------|--|----------------|-----------------------|--------------|--|--------------|--|-------------------------------|---|--------------------------|--------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------|----------------------------|----------------------------------|-----------------------|------------------------------|-----------------------------------|--| | SAMPLE TYPE | standard
tap water
essential oil | standard
standard
tap water | | standard | standard
essential oil | standard
standard | standard | tap water
standard | standard | standard | standard | standard | | standard
standard | standard | | standard standard
essential oil | tap water | standard | standard
standard | tap water
essential oil | | ID LEN CARRIER
(mm) (m) GAS | 50 | 0.25 108 helium
0.50 25 helium
25 helium | | 5 | 0.30 50 helium
0.30 50 helium | 0.30 50 helium
0.30 50 helium | 108 | | 0.30 25 helium | 20 | | 0.27 100
0.50 25 helium | 50 | 3.18 3.1 helium
2.0 2 | 0.32 50 hydrogen | | 0.25 108 helium | 0.32 50 hydrogen | 0.30 50 helium
0.30 50 helium | | 0.25 15 helium | 0.25 108 helium
0.30 50 helium | 0.30 50 helium | | COLUMN TYPE | | open tubular
open tubular | wall-coated open tubular wall-coated open tubular | | bonded phase
bonded phase | | open tubular | wall-coated open tubular
wall-coated open tubular | tubular | open tubular | open tubular | wall-coated open tubular
wall-coated open tubular | open tubular | Supelcoport (100-200 mesh) 15% w/w on Gas-Chrom Q (100-120 mesh) | bonded phase | | wall-coated open tubular | bonded phase | | open tubular | bonded phase | open tubular | wall-coated open tubular
bonded phase | | COLUMN MATERIAL | quartz g
glass
quartz g | | glass
quartz glass | quartz glass | quartz glass
quartz glass | | h | glass
qlass | glass | grass
quartz glass | glass | goda glass
glass | quartz glass | stainless steel | de
quartz qlass | 1 | glass | glass | glass | glass | glass | glass | quartz glass | quartz glass
quartz
glass | | quartz glass | glass
quartz glass | glass
quartz glass | | STATIONARY
PHASE | Pyl, (cumen
OV-1
SP-2100
OV-1 | OV-101
SE-30
Me silicone | 0000 | _ | 0V-1
0V-1 | OV-1 | _ | SP~Z100
OV-1 | 0V-1 | 0V-1 | SE-30 | OV-101 | SE-30 | SE-30
SE-30 | 1, sulphonamide OV-1 | 1 | OV-101 | Y*
OV-101 | 1
0V-101 | 1
ov-101 | 1
ov-101 | tyl
OV-101 | 0V-1 | 1 | SP-2100
nloronitro | DB-1
ethvl | ! | SP-2100
OV-1 | | LTP COLUMN
INDEX ORIGIN | benzene, isopropyl,
0906 Hall OV
0906 Supelco SP
0906 Hall OV | 0909 Quadrex
0910
0913 HP | | m . | 0739 Hall | | | 0748 Supelco
0751 | 0752 | 0753 | | 0757 PEC | 0761 | 0764 HP
0767 | benzene, n-butyl,
1721 SAC | ō | 1659 Quadrex | (3) | benzene, n-hexyl
1244 Quadrex | benzene, n-nonyl
1555 Quadrex | benzene, n-octyl
1451 Quadrex | | benzene, nitro
1046 SAC | 0 | ·. | 1719 DB-benzene. nentamethyl | \circ | 1266 Supelco
1266 Hall | | LIT | 14
2
3
3
14 | 64 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 14
2
38 | 14 | 28
33 | 26 | 56
56 | 56 | 23 29 | . H 4. | | 28
1
28 | 52 | |---------------------|---|---|---|--|--|------------------------------|--|---|--|---|---|---|--| | SAMPLE TYPE | standard
standard
standard
tap water
essential oil
standard | standard tap water essential oil standard standard standard standard standard | standard
standard
standard | standard
standard | standard
essential oil
standard | standard | standard
standard | standard | grandard
gtandard | standard
standard | standard
I)
standard | standard
II)
standard
standard | standard | | LEN CARRIER (m) GAS | 25 helium
108 helium
50 helium
50 helium
25 helium | 50 helium
50 helium
108 helium
25 helium
50 nitrogen
2
25 helium | 25 helium
108 helium
2 | 25 helium
108 helium | 50 helium
50 helium
50 hydrogen | 12 | 12 | 12 | 12
15 helium | 4 helium | | 50 hydrogen
(endosulfan
4 helium
50 hydrogen | 25 nitrogen standard | | II) | 0.50
0.25
0.30
0.30 | 0.30
0.25
0.50
0.50
2.0 | 0.50
0.25
2.0 | 0.50 | 0.30
0.30
0.32 | 0.20 | 0.20 | 0.20 | 0.25 | рат)
3.00 | zam)
3.00
2,4,3-
3.00 | 0.32
2,4,3-
3.00
0.32 | 0.33 | | COLUMN TYPE | wall-coated open tubular wall-coated open tubular bonded phase wall-coated open tubular bonded phase wall-coated open tubular | bonded phase wall-coated open tubular bonded phase wall-coated open tubular 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular
wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular
wall-coated open tubular | bonded phase
bonded phase
bonded phase | | bonded phase
bonded phase | bonded phase | bonged phase
wall-coated open tubular | 7-chloro-1-(cyclopropylmethyl)-1,3-dihydro-5-phenyl-2H-1,4- (prazepam) glass 3% w/w on Chromosorb W HP (80-100mesh) 3.0/SE-30 glass | illuoromethyl-14-1,5- (trifluba
Chromosorb W HP (80-100mesh)
5a,6,9,9a-hexahydro-6,9-methano-2
on Chromosorb W HP (80-100mesh) | ass bonded phase 0.32 0-hexachlorol,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3- 3% w/w on Chromosorb W HP (80-100mesh) 3.00 ass bonded phase | wall-coated open tubula $oldsymbol{r}$ | | MATERIAL | 88 B
88 B | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | rd
rd | 888 | 53 | n 51 | ropylmet | | ass
O-hexach
ass | 83 | | COLUMN | glass
glass
quartz gl
glass
quartz gl | quartz gl.
glass
quartz gl.
glass
glass
qlass
quartz gl. | glass
glass | glass
glass | quartz gl
quartz gl
quartz gl | | quartz gl.
quartz gl. | artz | quartz gla
quartz gla | ·I- (cyclor
glass
glass | F 3 | quartz glass
6,7,8,9,10,10-h
glass
quartz glass | yl ester
Boda glas | | STATIONARY
PHASE | SE-30
CV-101
CV-1
SP-2100
CV-1
SE-30 | OV-1
SP-2100
OV-1
OV-101
SE-30
SE-30
SE-30
SE-30
Me silicone | SE-30
OV-101
SE-30 | SE-30
OV-101 | V-1
V-1
V-1 | e silicone | Me silicone o | Licone | | one, 7-chloro-1
OV-1
OV-1/SE-30 | 1 | 6,7 | 1,2-dimethylpropyl
SE-30
sod | | COLUMN | pentyl
Quadrex
Hall
Supelco | propyl
Hall
Supelco
Hall
Quadrex
HP | Quadrex | uadrex | all
all
aC | 2405 HP
benzo(a) fluorene | 2177 BP
benzo(b)fluorene
2195 BP | Denzo(D)naphuno(Z,1-u)
1726 HP Me si
benzo(ghi)fluoranthene | nr
Ine
Jaw Sai. | benzodiazepin-2-one,
2610 OV-1
2612 OV-1 | ıne-Z,
hiepin | w. | acid, 1,2
SGE | | LTP
INDEX | benzene,
1135
1141
1145
1145
1145 | benzene,
0936
0936
0936
0937
0937
0941
0944
0950 | 0975
0975
1008 | 1076 Q | 1683
1683
2042
2042 | 2405
benzo(a) | 2177
benzo(b)
2195 | benzo(b)
1726
benzo(gh | benzocaine | benzodia
2610
2612 | benzodia
2244
benzodio
2085 | 2086
benzodio
2175
2183 | benzoic
1356 | | LIT | 52 | 52 | 52 | 52 | 52 | 2.1 | 21 | 2.1 | 21 | 52 | 21 | 52 | 52 | 21 | 21 | 2.1 | , r | 3 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52
56 | |---------------------------|--------------------------|--------------------------|--------------------------|------------------------------------|--------------------------|---|---|---|---|--------------------------|---|--------------------------|--------------------------|---|---|-----------------------|--------------------------|--------------------|----------------------------------|--------------------------|--------------------------|-----------------------------------|--------------------------|--------------------------|---------------------------|--------------------------|--|--| | SAMPLE TYPE | en standard | standard | standard | standard | standard | en standard | standard | en standard | en standard | standard | standard | standard | | | en standard standard
standard | | CARRIER
GAS | nitrogen | nitrogen | nitrogen | nitrogen | nitrogen | argon | argon | argon | argon | nitrogen | argon | nitrogen | nitrogen | argon | argon | ardon | nitrogen | 6010111 | nitrogen | LEN
(m) | | 25 | 25 | 25 | 25 | 1.5 | 1.5 | 1.5 | 1.5 | 25 | 1.5 | 25 | 25 | 1.5 | 1.5 | 1.5 | | | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25
12 | | ID (mm) | 0,33 | 0.33 | 0.33 | 0.33 | 0.33 | 4.00 | 4.00 | 4.00 | 4.00 | 0.33 | 4.00 | 0.33 | 0.33 | 4.00 | 4.00 | 4.00 | 0.33 | • | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | | COLUMN TYPE | wall-coated open tubular | derivative
10% w/w on Diatoport S (80-100mesh) | wall-coated open tubular | tive
10% w/w on Diatoport S (80-100mesh) | wall-coated open tubular | wall-coated open tubular | derivative
10% w/w on Diatoport S (80-100mesh) | derivative
10% w/w on Diatoport S (80-100mesh) | | 11.9 | | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | • | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | Hall-coated open tubular | wall-coated open tubular | wall-coated open tubular
bonded phase | | COLUMN MATERIAL | nyl ester
soda glass | ester
soda glass | | ethyl ester
soda glass | B 25 | 17118 | | aılyl | ethylsilyl | 92 | trimethylsilyl derivative | r
soda glass | soda glass | silyl | | trimethylsilyl de | 1,2-dimethylpropyl | 1-methyl-3-butenyl | soda glass
-methylbutyl ester | _ | | 4,2,2 circurorogumy
soda glass | soda glass | | | | 2 propenti ester
soda glass
2-propunul ester | propyny, earer
soda glass
quartz glass | | MN STATIONARY
IN PHASE | 1-methyl-3-but
SE-30 | a a | 1-methylpropyl
SE-30 | 2,2,2-trichloroethyl
SE-30 soda | ς . | | | | _ | | | | 0 | 4-dihydroxy,
ov-1 | | 3, 5-dihydroxy, OV-1 | 3,5-dinitro, 1,
SE-30 | tro, | SE-30 | | | SE-30 | | 3,5-dinitro, Z-SE-30 | 4 0 | 4 0 | | Ē | | LIP COLUMN INDEX ORIGIN | | | | | | | | | | | benzoic acid,
1501 | | O | | benzoic acid,
1684 | benzoic acid,
1828 | benzoic acid, | υ | 1962 SGE
benzoic acid, | ξ | | | | | Denzoic acid,
2015 SGE | | 1842 SGE | | | LIT | 52 | 52 | 21 | 52 | 51 | 51 | 51 | 51 | 51 | 51 | 52 | 51 | 51 | 51 | 52 | 7 1 | 52 | 52 | 51 | 52 | 21 | 0 3 | 7.7 | 21
20 | 21 | 21 | 21 | |-------------------------|--------------------------|--------------------------|---------------------------
--------------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------|---------------------------------------|--------------------------|--------------------------------|-------------------------------|--------------------------|---------------------------|---------------------------------------|---|-------------------------------------|---------------------|--|---| | R SAMPLE TYPE | en standard | | | standard | standard
en standard | standard | standard | standard | | CARRIER
GAS | nitrogen nítrogen | nitrogen | nitrogen | | | nitrogen | nitrogen | nitrogen | nitrogen | | | argon | argon
nitrogen | argon | argon | argon | | LEN
(m) | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | 3 25 | | 3 25 | 3 25 | 3 25 | 3 25 | | | e | 0 1.5 | 0 1.5 | 0 1.5 | 4.00 1.5 | | 0 (E) | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | ń (| 0.33 | 0.33 | 0.33 | 0.33 | 4.00 | 0.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.0 | | COLUMN TYPE | wall-coated open tubular uedo | wall-coated open | wall-coated open tubular | ir
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | m/m %0 | 13% w/w on Chromosorb w
derivative | <pre>10% w/w on Diatoport S (80-100mesh) :ive</pre> | 10% w/w on Diatoport S (80-100mesh) | 45 | <pre>/l derivative 10% w/w on Diatoport S (80-100mesh)</pre> | lyl derivative
10% w/w on Diatoport S (80-100mesh) | | ARY COLUMN MATERIAL | 3-butenyl e
soda gla | | butyl ester
soda glass | | , decyl ester
soda glass | dod | | heptyl est
soda gl | hexyl este
soda gl | , methyl ester
soda glass | | | oct | ben | propyl est
soda gl | soda glass
, trans-3-butenyl ester | soda glass | trans-3-he
soda gl | , undecyl ester
soda glass | ester
soda glass | trimethylsilyl derivative | -methoxy, trimethylsilyl |]
 | †
*1 | hoxy, | | -methoxy, trimethylsilyl | | N STATIONARY
N PHASE | 3,5-dinitro, | 3,5-dinitro,
SE-30 SE-30
3,5-dinitro, | SE-30 | 3,5-dinitro,
SE-30 | H | | λ, | SE-30
3-hydroxy-4-methoxy | OV-1 | * "Yatory,
OV-1
SE-30 | 4-hydroxy-3
OV-1 | 4-hydroxy-3-ethoxy,
OV-1 | 4-hydroxy-3-methoxy,
OV~1 | | COLUMN | acid, SGE | acid, 3
SGE | acid, S
SGE | acid, 3
SGE | acid, 3
SGE | acid, SGE | acid, 3
SGE | acid, 3
SGE | acid, i
SGE | acid, SGE | acid, SGE | acid, SGE | ř | ਜ | σ' | SGE
acid, : | | acid, :
SGE | acid, | acid, :
SGE | acid, | acid, | 7 | | acid, | acid, | acid, | | LTP
INDEX | benzoic
1938 | benzoic
2054 | benzoic
1957 | benzoic
2158 | benzoic
2581 | benzoic
2791 | benzoic
1755 | benzoic
2266 | benzoic
2162 | benzoic
1690 | benzoic
1785 | benzoic
2476 | benzoic
2370 | benzoic
2058 | benzoic
1761 | 1853
benzoic | 1970 | benzoic
2156 | benzoic
2686 | benzoic
1334 | benzoic
1557 | 1560
benzoic | 1760 | 1620
1620
1621 | benzoic
1889 | benzoic
1804 | benzoic
1753 | | LIT
REF | 21 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 51 | 52 | 51 | 51 | 51 | 51 | 51 | 51 | 52 | 51 | 51 | 51 | 52
51 | |-------------------------------------|---|-------------------------------|-------------------------------|-----------------------------|------------------------------------|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|-------------------------------|--------------------------|--------------------------|-----------------------------|-----------------------------|--------------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--| | N CARRIER SAMPLE TYPE SAMPLE TYPE | 5 argon standard | 25 nitrogen 5 25 nitrogen standard | 25 nitrogen standard | 25 nitrogen standard | 25 nitrogen standard | 25 nitrogen standard
25 nitrogen standard | | ID LEN | .00 1.5 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 | 0.33 | 0.33 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 2 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | | COLUMN TYPE | .ive
10% w/w on Diatoport S (80-100mesh) 4 | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | er
wall-coated open tubular | wall-coated tubular
wall-coated open tubular | | STATIONARY
PHASE COLUMN MATERIAL | trimethylsilyl de | 1,2-dimethylpropyl soda glass | l-methyl-3-buten
soda glas | 1-methylbutyl e
soda glé | l-methylpropyl ester
soda glass | 2,2,2-trichloroe | 2,2-dic | 2-chloroethyl e | 2-methylpro | 2-propenyl
soda | 2-propy | 3-butenyl este | 3-methylbut | 4-pent | butyl ester
soda glas | cis-3-hexenyl es
soda qlas | decyl ester soda glas | dodecyl este
soda | ethyl ester
soda | heptyl | hexyl e | methyl ester
sods | methyl | nonyl | octyl e | pentyl | itro, propyl ester
SE-30 soda glass
SE-30 soda glass | | COLUMN SOURIGIN | acid, 4-met | acid, 4-nitro,
SGE SE-30 | acid, 4-nitro,
SGE SE-30 | acid, 4-nitro,
SGE SE-30 | d, 4-n | d, 4-n | d, 4-n | 4-n | 4-n | a, 4-n | d, 4-n | 4-n | 4-n | acid, 4-nitro,
SGE SE-30 | 1, 4-n | d, 4-n | d, 4-n | d, 4-n | acid, 4-nitro,
SGE SE-30 | acid, 4-nitro,
SGE SE-30 | 4-n | acid, 4-nitro,
SGE SE-30 | 4-n | 4-n | 4-n | ਰੇ . | acid, 4-nitro,
SGE SE-30
SGE SE-30 | | × | benzoic a | r) | benzoic a
1708 S | benzoic a | υ | 75 | υ | | benzoica
1649 S | benzoic a
1577 S | O | υ | £3 | benzoic a
1791 S | benzoic a | n | n | rs | n | benzoic a
2016 S | benzoic a
1911 S | benzoic a
1423 S | | benzoic a
2227 S | U | | benzoic a
1491 S
1594 S | | LIT | 52 | 52 | 51 | 52 | ~ | 51
19 | 52 | 51 | 51 | 51 | 52 | 4.5 | 45 | | | 51 | 51 | C T | 52
19 | 52 | 13 | 51 | 38 | - | 19 | 34 | 52 | 51 | 51 | 51 | |----------------------------|---------------------------|-------------------------------------|-----------------------------|---------------------------|--|--|--------------------------|--------------------------|--------------------------|----------------------|--------------------------|----------|----------|--|-----------------------|--------------------------|---------------------------|------------------|--|---------------------------|-----------------------|--------------------------|---|--|------------------|---------------------------------------|--------------------------|--------------------------|--------------------------|---------------------------| | SAMPLE TYPE | standard | standard | standard | standard | standard | standard
standard | standard standard
standard | | standard | standard | stalldatu | standard
standard | standard | LEN CARRIER (m) GAS | 25 nitrogen | 25 nitrogen | 25 nitrogen | 25 nitrogen | 4 helium | 25 nitrogen | 25 nitrogen | 25 nitrogen | 25 nitrogen | 25 | 25 nitrogen | | | 4 helium
4 helium | | 25 nitrogen | 25 nitrogen | | 25 nitrogen | 25 nitrogen | | 25 nitrogen | 7 | 4 helium | • | 2.9 | 25 nitrogen | 25 nitrogen | 25 nitrogen | 25 nitrogen | | ID (mm) | 0,33 | 0.33 | 0.33 | 0.33 | 3.00 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.27 | 0.27 | 3.00 | | 0.33 | 0.33 | | 0.33 | 0.33 | | 0.33 | 2.0 | 3.00 | | 2.0 | 0.33 | 0.33 | 0.33 | 0.33 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular
25%w/w on Celite | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | open | wall-coated open tubular | | | 3% w/w on Chromosorb W HP (80-100mesh) | : | wall-coated open tubular | ate | 25%W/w on Celife | wall-coated open tubular
25%w/w on Celite | wall-coated open tubular | 25%W/w on Celite | wall-coated open tubular | 25%W/W on Celife
15% W/W on Gas-Chrom Q (100-120 mesh) | 3% w/w on Chromosorb W HP (80-100megh) | w/w on Celite | 3% on Chromosorb W HMDS (80-100 mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | | trans-3-hexenyl ester
soda glass | undecyl ester
soda glass | er
soda glass | glass | soda glass | ester
soda glass | soda glass | soda glass | soda qlass | las | glass | d ass | glass | grand | soda glass | soda glass | | soda glass | r
soda glass | | soda glass | | 4-hydroxy | 2
3
4
5 | glass | ester
soda glass | soda glass | soda glass | soda glass | | IN STATIONARY | | | 4-nitro, undecy
SE-30 | 4-pentenyl ester SE-30 | benzyl ester
OV-1 | butyl ester
SE-30
SE-30 | hexenyl
30 | decyl ester
SE-30 | dodecyl ester
SE-30 | ethyl ester
SE-30 | SE-30 | OV-101 | 00-101 | 0V-1 | Ov=1
heptvl ester | (1) | hexyl ester
SE-30 | SE-30 | 1sobutyl ester
SE-30
SE-30 | isopentyl ester
SE-30 | SE-30
methyl ester | SE-3 | SE-30
SE-30 | methyl
ester, | SE-30 | | ethyl
30 | nonyt ester
SE-30 | | pentyl ester
SE-30 | | LTP COLUMN
INDEX ORIGIN | benzoic acid,
1709 SGE | benzoic acid,
1904 SGE | benzoic acid,
2443 SGE | benzoic acid,
1444 SGE | benzoic acid,
1738 | benzoic acid,
1353 SGE
1360 | acid,
SGE | ~ | | benzoic acid, | | 1153 | 1155 | 1227 | 1349
benzoia acid. | | benzoic acid,
1551 SGE | 7 | benzoic acid,
1306 SGE
1318 | benzoic acid,
1413 SGE | 1425
henzoic acid. | | 1080
1095 | benzoic acid, | 1435 | | | | | benzoic acid,
1455 SGE | | LIT
REF | 51 | -1 | 52 | 52 | 21
20 | 51 | ī) c | , 55
15
15
15
15
15
15
15
15
15
15
15
15
1 | , , | 4,00 | 53 | 4 | - | 47 | 47 | | ოო | 4 4 | ř | 47 | 4.7 | | 47 | 4 | 59 | ഥനന | ოოთ | |--|---------------------------------|--|--------------------------|------------------------------|--|---|--------------------------|---|-------------|-----------|---|---------------------------------|--|---|--------------------------------|-------------|----------------------------------|-----------------------|---|--|-------------------------------|---|--------------|----------|-----------------------------------|---|--| | SAMPLE TYPE | standard | standard | standard | standard | standard
standard | standard | tap water | | | standard | standard | standard | standard | standard | atandard | | essential oil essential oil | standard | | standard
standard | atandard | 40 to | standard | standard | standard | tap water
essential oil
standard | standard
essential oil
tap water | | LEN CARRIER (m) GAS | 25 nitrogen | 4 helium | 25 nitrogen | 25 nitrogen | 1.5 argon
2.4 nitrogen | 25 nitrogen | 50 balium | | | 15 helium | 2 nitrogen | | 4 helium | 25 helium | 25 helium | | 50 helium
50 helium | 25 helium | | 25 helium
25 helium | 25 helium | | 25 helium | | 2 nitrogen | 50 helium
50 helium | 50 helium
50 helium | | (mm) | 0.33 | 3.00 | 0.33 | 0.33 | 4.00 | 0.33 | 90 | 0.31 | | 0.25 | ις | | 3.00 | 0.20 | 0.20 | | 0.30 | 0.20 |)
 -
 - | 0.20 | 0.20 | | 0.20 | | 0.32 | 0.30 | 0.30 | | COLUMN TYPE | wall-coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | wall-coated open tubular | 10% w/w on Diatoport S (80-100mesh) 13% w/w on Chromosorb W AW | wall-coated open tubular | wall-coated open tubular | bonded phase | | | (bromoxynil octanoate) 3% w/w on Chromosorb W HP (80-100mesh) | | 3% w/w on Chromosorb W HP (80-100mesh) | 2-amino-2"-chioro-3-nitro (clomazepam benzopnemone)
Me silicone quartz glass | orazepam benzophenone)
Lasa | | bonded phase
bonded phase | | -amino-5-chloro-2'-fluoro (flurazepam benzophenone) | | ppan benzophenone) | | | | Chromosorb P AW DMCS (60-80 mesh) | wall-coated open tubular
bonded phase
bonded phase | bonded phase
bonded phase
wall-coated open tubular | | COLUMN MATERIAL | soda glass | 4-nydroxy
glass | ester
soda glass | ester
soda glass | | soda glass | glase | ייכ | ichlobenil) | | ester
lass | glass | glass | ro-3-nitro (clona)
quartz glass | .C. o | "
! | quartz glass
quartz glass | glass
gnartz glass | o-2'-fluoro (flura | quartz glass
quartz glass | (nitraze | | grants glass | glass | , | thylpropyl)-1,4-
glass
quartz glass
quartz glass | ethyl)-1,4-
quartz glass
quartz glass
glass | | LTP COLUMN STATIONARY INDEX ORIGIN PHASE | acid, propyl ester
SGE SE-30 | acid, propyl ester,
OV-1 | acid,
SGE | acid, trans-3-hexenylsGE SGE | CE1MECNY1811Y1
OV-1
SE-30 | benzoic acid, undecyl ester
2068 SGE SE-30 | Ξ. | 0976 HP OVI-1/SE-54 | trile, 2,6 | DB-1 | benzonitrile, 3,5-dibromo-4-oc
2316 PEC SE-30 | benzophenone
1610 OV-1/SE-30 | | benzophenone, Z-amino-Z'-chio
2494 HP Me silicone | henone, 2-a | nenone, 2-a | 1989 Hall OV-1
1995 Hall OV-1 | | N | 2517 HP Me silicone
2542 HP Me silicone | benzophenone, 2-amino-5-nitro | nenone, 2-methylamino-5 | НР | 4 | ر , | 100, | benzoguinone, Z,6-di(methoxymethyl)-1,
1447 Hall OV-1 quartz g
1447 Hall OV-1 quartz g
1447 Supelco SP-2100 glass | | LIT
REF | 59 | 59 | 59 | 59 | 59 | 59 | en en | П | 23 | 23 | 38
46
1 | ოო | æ | œ | ស | 8 | 56 | ოო | . m (| 2 4
4 4 | 9 13 | សួ | 3 00 6 | 30 - | • | |----------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------|--|-------------------------------|--------------------------|---|--|---|--------------------------|------------------------------|--------------------------|-----------------------------|---------------------------|------------------------|--------------------------|--|--------------------------|------------------------------|--|------------------------| | SAMPLE TYPE | standard | standard | standard | standard | standard | standard | standard
standard | standard | standard | standard | standard
food
standard | standard
essential oil | standard | standard | tap water | standard | standard | standard
essential oil | | standard
tap water | standard
standard | tap water | standard | standard
standard | | | LEN CARRIER
(m) GAS | 2 nitrogen | 50 helium
50 helium | 4 helium | 15 helium | 15 helium | 2
80 nitrogen
4 helium | 50 helium
50 helium | 50 nitrogen | 50 nitrogen | | 50 nitrogen standard | 12 | 50 helium
50 helium | 50 | 50 hydrogen
25 helium | 108 helium
50 helium | | 200 | 100 helium
25 nitrogen
4 helium | | | ID (mm) | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 6.0 | 3.00 | 0.25 | 0.25 | 2.0
0.28
3.00 | 0.30 | 0.20 | 0.20 | | 0.20 | 0.20 | 0.30 | 0.30 | 0.32 | 0.25 | 0 | 0.20 | 0.33 |) | | COLUMN TYPE | Chromosorb P AW DMCS (60-80 mesh) | bonded phase
bonded phase | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) wall-coated open tubular 3% w/w on Chromosorb W HP (80-100mesh) | bonded phase
bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase | bonded phase | | bonded phase | wall-coated open tubular
bonded phase | wall-coated open tubular | open | wall-coated open tubular wall-coated open tubular 32 | W/W on Chromosold w ne | | COLUMN MATERIAL | , 4 - | ÷ | <u>I</u> | | , | oxymethyl-1,4- | quartz glass
quartz glass | glass | quartz glass | quartz glass | glass
glass | quartz glass
quartz glass | ne
quartz glass | quartz glass | glass | quartz glass | quartz glass | 91 | glas | quartz glass | glass
martz glass | , ' | quartz glass
quartz glass | glass
quartz glass | grass | | STATIONARY | 2, 6-di-t-butyl-1,
SE-30 | 2, 6-dimethoxy-1,4 | 2, 6-dimethyl-1,4
SE-30 | 2-methoxy-1,4-
SE-30 | 2-methyl-1,4-
SE-30 | 3-methoxy-6-hydroxymethyl
SE-30 | 0V-1
0V-1 | 2-mercapto
OV-1 | . SE-30 | . SE-30 | SE-30
OV-101
OV-1 | OV-1
OV-1 | ona-3,6(1)-dier
SE-30 | SE-30 | 4-phenyl
to SP-2100 | ne
SE-30 | Me silicone | OV-1 | 0V-1 | OV-1
Me silicone | | | Me silicone
SE-30 | SE-30
SE-30 | 00-1 | | LTP COLUMN
INDEX ORIGIN | benzoquinone, 2, | benzoquinone, 2,
1522 | uinone, | uinone, | | | | | benzphetamine
1806 J&W Sci | ^ | | benzyl cyanide
1094 Hall
1094 Hall | bicyclo[4.3.0]nona-3,6(1)-diene
1038 SE-30 q | bicyclohexyl
1313 | bicyclohexyl, 4-1971 Supelco | o o | binaphthyl, 1,1'
2306 HP | ጚ | 1343 Hall
1348 Hall | 1348 SAC | | | 1357 HP
1359 | 1365
1374 SGE | 1389 | | | CARRIER GAS SAMPLE TYPE | hydrogen standard standard | hydrogen standard | hydrogen standard | hydrogen standard | standard
nitrogen standard | |---|--|--|---------------------------------|------------------------------------|--------------------------|--|--------------------------|--------------------------|---|---|---|--|---|---|--------------------------|--------------------------|---|--------------------------|--------------------------
--------------------------|--|---|--------------------------|--------------------------|---|--------------------------------------|--| | | (m) | 25 h 12 | 25 h | 25 h | 25 h | 12
25 n | | | T QI | 0.22 | 0.22 | 0.22 | .22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.20 | 0.22 | 0.22 | 0.22 | 0.20 | | | I (n) | 0. | 0. | | 0. | | .0 | | | | | o | | | | | | | | | | | 0 | | | | | | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular |)
wall-coated open tubular | wall-coated open tubular | 94)
wall-coated open tubular | wall-coated 201)
wall-coated open tubular | wall-coated open tubular | bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase
wall-coated open tubular | | • | LTP COLUMN STATIONARY INDEX ORIGIN PHASE COLUMN MATERIAL | 2,2',3',4,5-pentachloro (PCB 97)
ROMFAK CP Sil 5CB quartz glass | octachloro (FCB
quartz glass | 4,4',5-heptachlo
Sil 5CB quartz | ,4,4'-hexa
Sil 5CB | 2,2',3,3',4,4'5,5'-octachloro (FCB 1
ROWDAK CP Sil 5CB quartz glass | quartz glass | | biphenyl, 2,2',3'4'4',3'-nexaculoro (FCB 130) 2273 CHROMPAK CP Sil 5CB quartz glass | biphenyl, 2,2',3,4,4',5,5' -heptachioro (FCB 100) 2423 CHROMPAK CP Sil 5CB quartz glass | biphenyl, 2,2',3',4',5'hexachloro (FCB 13') 2257 CHROMPAK CP Sil 5CB quartz glass | biphenyl, 2,2',3,4,5'-pentachloro (FCB 6') 2088 CHROMPAK CP Sil 5CB quartz glass | biphenyl, 2,2',3,4'5,5' hexachloro (PCB 141)
2244 CHROMPAK CP Sil 5CB quartz glass | biphenyl, 2,2',3,5',6-pentachloro (PCB 93)
2003 CHROMPAK CP Sil 5CB quartz glass | | Sil 5CB quartz | 2,2',4,4',5,5'-hexachloro (ROMPAK CP Sil 5CB quartz | ro (PCB
quartz | ro (PCB
quartz | quartz glass | 2,2'3,3',4',5,5',6-octachioro (rus
ROMPAK CP Sil 5CB quartz glass | biphenyl, 2,2'4,5,5'-pentachloro (FCB 101)
2053 CHROMPAK CP Sil 5CB quartz glass | 2,2-dinitro Me silicone | ro (FCB
quartz | biphenyl, 2,4',5-trichloro (FCB 31) 1818 CHROMPAK CB Sil 5CB quartz glass | Z,4,4"-trichloro (FROMPAK CP Sil 5CB | Diphenyl, z-nitro
1651 HP Me silicone quartz glass
1669 SGE SE-30 quartz glass | | LIT
REF | 30 | 36
30 | 56 | - | 28
43 | 47 | 12 | 12 | 10 | 13 | 12 | 10 | 10 | 10 | 12 | 10 | 10 | 12 | 12 | 10 | 23 | 23 | 23 | 23 | 49 | 23 | |----------------------------|--|--|-----------------------------|--|---|-----------------------|---------------------------------------|--------------------------|---------------------------------------|------------------------------|-------------------------------|--------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|-------------------------------|--|--------------------------|---|--|-------------------------------|----------------------------|--------------------------------|--------------|----------------------------| | SAMPLE TYPE | standard
standard | standard
standard | standard | standard | standard
tap water | standard | LEN CARRIER (m) GAS | 12
25 nitrogen | 12
25 nitrogen | 12 | 4 helium | 50 hydrogen
50 helium | 25 helium | 25 nitrogen 15 helium | | OII) | 0.20 | 0.20 | 0.20 | 3.00 | 0.32 | 0.20 | 0.30 | 0.30 | 0.30 | 0.30 | 0:30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | | COLUMN TYPE | bonded phase
wall-coated open tubular | bonded phase
wall-coated open tubular | bonded phase | 3% w/w on Chromosorb W HP (80-100mesh) | bonded phase | | wall-coated open tubular bonded phase | wall-coated open tubular | | COLUMN MATERIAL | quartz glass
quartz glass | quartz glass
quartz glass | quartz glass | glass | quartz glass
quartz glass | | | | butenyl ester
quartz glass | yl ester
quartz glass | pyl ester
quartz glass | ester
quartz glass | ester
quartz glass | ester
quartz glass | yl ester
quartz glass | | yl ester
quartz glass | yl ester
quartz glass | ester
quartz glass | enyl ester
quartz glass | quartz glass | | STATIONARY
PHASE | o
Me silicone
SE-30 | o
Me silicone
SE-30 | | ate, 4,4-
OV-1 | liso
OV-1
OV-101 | ~ | l, 1,1-dimethylpropyi
SE-30 quartz | | i, 1-methyl-3-butenyl
SE-30 quartz | 0,1 | 2-methylpro
3E-30 | 2-propenyl | 2-propynyl
3E-30 | | 3-methylbut
SE-30 | 4-pentenyl
E-30 | l, cis-3-hexenyl
SE-30 q | l, dimethylethyl ester
SE-30 quartz | | l, trans-3-hexenyl ester
SE-30 quartz gl | ımine
SE-30 | SE-30 | SE-30 | SE-30 quartz gl | | SE-30 | | LTP COLUMN
INDEX ORIGIN | biphenyl, 3-nitro
1786 BP
1808 SGE | biphenyl, 4-nitro
1815 HP
1834 SGE | biphenyl, methyl
1465 HP | _ | borneol, 2-methyliso
1164 SAC OV-1
1183 OV- | bromazepam
2613 HP | | bromoacetic acid | | bromoacetic acid
1094 SGE | bromoacetic acid,
1021 SGE | | | bromoacetic acid,
1040 SGE | | bromoacetic acid,
1146 SGE S | bromoacetic acid,
1255 SGE | | | bromoacetic acid,
1251 SGE | bromodiphenhydramine 2125 J&W Sci. SE- | brompheniramine 2067 J&W Sci. | buclizine
3267 J&W Sci. | bupivacaine
2251 Jaw Sci. S | 2 | butacaine
2422 J&W Sci. | | LIT
REF | 80 | æ | 28 | 40
1 | 38 | 38 | 38 | 46 | 40 | 40 | 40 | 40 | - | 41
40 | 40 | 40 | ო | 40 | 40 | o
c | 2 4 6
0 8 | 40 | 37 | 40 | 37
37
37 | |--------------------------------|--------------------------|----------------------------|--------------|--|---------------------|---------------------------------------|---------------------------------------|--------------------------|--------------------------|---------------------------|----------------------------|--------------------------|--|--|-----------------------------|------------------------|-----------|--|----------------------------------|-----------------------|---|--------------------------------|--|-----------------------------|---| | SAMPLE TYPE | standard | standard | | cap water
standard
standard | standard | standard | standard | food | standard | standard | standard | standard | standard | standard
standard | standard | standard | | tap water
standard | standard | 7
6
7
6
4 | | | standard
standard | standard | standard
standard
standard | | LEN CARRIER
(m) GAS | 50 nitrogen | 50 nitrogen | 50 hydrogen | 50 nitrogen
4 helium | | 7 | 7 | 80 nitrogen | 50 nitrogen | 50 nitrogen | 50 nitrogen | 50 nitrogen | 4 helium | 15 helium
50 nitrogen | 50 nitrogen | 50 nitrogen | 50 helium | 50 nitrogen | 50 nitrogen | 50 hydrogen | | 50 nitrogen | 108 helium
100 | 50 nitrogen | 17
100
17 | | ID
(mm) | 0.20 | 0.20 | 0.32 | 3.00 | 2.0 | 2.0 | 2.0 | 0.28 | 0.2 | 0.2 | 0.2 | 0.2 | 3.00 | 0.32 | 0.2 | 0.2 | 0.30 | 0.2 | 0.2 | 33 | 2.0 | 0.2 | 0.25 | 0.2 | 0.2
0.27
0.2 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | | wall-coated open tubular
wall-coated open tubular
3% w/w on Chromosorb W HP (80-100mesh) | Gas-Chrom Q (10 | 15% w/w on Gas-Chrom Q (100-120 mesh) | 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | | ø | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | honded nhase | wall-confined open tubular
15% w/w on Gas-Chrom O (100-120 mesh) | 1-coated open tubula | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | <pre>% wall-coated open tubular wall-coated open tubular % wall-coated open tubular</pre> | | COLUMN MATERIAL | z gla | (isoprene)
quartz glass | quartz glass | giass
quartz glass
glass | i. | | | glass | quartz glass | quartz glass | | quartz glass | glass | quartz glass
quartz glass | | | L1 | glass
quartz glass | quartz glass | | 9 | quartz glass | glass
soda glass | quartz glass | borosilicate glass
soda glass
borosilicate glass | | COLUMN STATIONARY ORIGIN PHASE | 2,3-dimethyl-1
SE-30 | 2-methyl-1,3-
SE-30 | ö | Superco SF-2100
Me silicone
OV-1 | , 3,3- | ie, 4 -phenyl SE-30 | SE-30 | 3-methy1
OV-101 | 2-dibromo
Me silicone | 2-dichloro
Me silicone | 1,3-dibromo
Me silicone | | 1,4-diamino (pucrescine)
OV-1 gl | 1,4-dibromo
J&W SCI DB-1
Me silicone | 1,4-dichloro
Me silicone | 1-bromo
Me silicone | 0 | Supelco SP-2100
Me silicone | 1-chloro-3-methyl
Me silicone | 1-iodo
Sac | - | 1-iodo-3-methyl
Me silicone | drex OV-101 | 2,2-dichloro
Me silicone | .c ov-1
c ov-1
c sE-30 | | LTP C
INDEX C | butadiene,
0616 | butadiene,
0507 | Ç. | 1206 Su
1222
1285 | butan-2-one
0698 | butan-2-one
1230 | | butanal, 3
0645 | butane, 1,2
0945 | butane, 1,2
0785 | | | Dutane, 1,
0930 | _ | | butane, 1-
0718 | | 0635 Su
0637 | butane, 1-
0706 |
butane, 1-i | | | | | 0536 PEC
0537 PEC
0540 PEC | | LIT
REF | 40 | 40 | 37
37 | 37 | 40 | 40 | 40 | 40 | 40 | 61 | , . | 7 | 40 | 40 | 40 | 46 | 46 | œ | 18 | 19 | 46 | 18 | 38
10
28 | 38
12 | 12 | |--------------------------------|--------------------------|--------------------------|---|--------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|---|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|------------------------------------|----------------------------|-----------------------------|--------------------------|------------------------------------|---|--|-----------------------------| | SAMPLE TYPE | n standard | ın standard | standard
standard
standard | standard | on standard | n standard | on standard | n standard | an standard | standard | standard | standard | on standard | n Btandard | on standard | n food | n food | standard | standard | standard | n food | standard | standard
n standard
n standard | standard
on standard | n standard | | LEN CARRIER (m) GAS | 50 nitrogen | 50 nitrogen | 108 helium
17
100 | | 50 nitrogen | 108 helium | 4 helium | 4 helium | 50 nitrogen | 50 nitrogen | 50 nitrogen | 80 nitrogen | 80 | 9.0 | 3.6 | | 80 nitrogen | 3.6 | 2
25 nitrogen
50 hydrogen | 2
25 nitrogen | 25 nitrogen | | OI (mm) | 0.2 | 0.2 | 0.25 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.25 | 3.00 | 3.00 | 0.2 | 0.2 | 0.2 | 0.28 | 0.28 | | | | 0.28 | | 2.0
0.30
0.32 | 2.0 | 0.30 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | <pre>wall-coated open tubular s wall-coated open tubular wall-coated open tubular</pre> | wall-coated | wall-coated open tubular | succinamide) 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | 10%w/w on Celite 560 AW(60-80mesh) | on Celite | 25%w/w on Celite | wall-coated open tubular | 10%w/w on Celite 560 AW(60-80mesh) | 15% w/w on Gas-Chrom Q (100-120 mesh) wall-coated open tubular bonded phase | 15% w/w on Gas-Chrom Q (100-120 mesh) wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | ıyı
quartz glass | quartz glass | | borosilicate glass | quartz glass | : | ımethyl | prophenyl (bulan)
glass | o
quartz glass | quartz glass | quartz glass | glass | glass | r
aluminium | 2-propenyl ester aluminium | | glass | aluminium | quartz glass
quartz glass | quartz glass | quartz glass | | COLUMN STATIONARY ORIGIN PHASE | 2,3-dimeth
gilicone | silicone | Z,3-dimethyl
Quadrex OV-101 9
PEC SE-30 1
PEC OV-101 6 | OV-1 | | 2-methyl
Me silicone | one | yl
icone | -metnyı
Me silicone | 2-methyl
Quadrex OV-101 | 2-methyl-2,3-dicarboxamide
OV-1 | 2-nitro-1,1-bis(4-chlorophenyl
OV-1 | abron
one | cone | ichloro
Me silicone | 2,3-
OV-101 | acid, (butyric acid)
OV-101 | acid, 2-propenyl ester
SE-30 | ٦, | acid, benzyl ester
SE-30 | methyl ester
OV-101 | cid, vinyl ester
SE-30 | SE-30
SE-30
OV-1 | SE-30
SE-30 | me cny 1-2-
SE-30 | | LTP | | | butane, 2,
0558 Ot
0563 PE
0567 PE | | | butane, 2-
0734 | | | butane, 2-
0829 | | | butane, 2-
2310 | butane, me
1549 | butane, me
0915 | butane, re
0903 | butanedione,
0619 | butanoic a
0834 | butanoic a | i c | butanoic a
1325 | ט | •• | Dutanol, 1-
0637
0646 SGE
0661 SAC | U | Dutano1, 2-
0625 SGE | | LIT
REF | 12
46
38 | 12 | 38 | 46 | 46 | 38 | 23 | 10 | 40 | 14 | 80 | 14 | 14 | 40 | 40 | 40 | 40 | Φ. | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 80 | |--------------------------------|---|----------------------------|---------------------------------------|--------------------------|--------------------------|---------------------------------------|----------------------------| | SAMPLE TYPE | standard
food
standard | standard | standard | food | food | standard | LEN CARRIER (m) GAS | 25 nitrogen
80 nitrogen
2 | 25 nitrogen | 2 | 80 nitrogen | 80 nitrogen | 2 | 15 helium | 25 nitrogen | 50 nitrogen | 25 helium | 50 nitrogen | 25 helium | 25 helium | 50 nitrogen | I QI (mm) | 0.30
0.28
2.0 | 0.30 | 2.0 | 0.28 | 0.28 | 2.0 | 0.25 | 0.30 | 0.2 | 0.50 | 0.20 | 0.50 | 0.50 | 0.2 | 0.2 | 0.2 | 0.2 | 0.20 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.20 | | COLUMN TYPE | wall-coated open tubular
wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100~120 mesh) | wall-coated open tubular | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | COLUMN MATERIAL | quartz glass
glass | quartz glass | | (acetol)
glass | oin)
glass | | quartz glass | quartz glass | quartz glass | glass | quartz glass | glass | glass | quartz -
quartz glass | quartz glass | quartz glass | quartz glass | quartz glass | | COLUMN STATIONARY ORIGIN PHASE | 3-methyl-1-
SGE SE-30
OV-101
SE-30 | , 3-methyl-2-
SGE SE-30 | | 1-hydroxy-2-
OV-101 | 3-hydroxy-2-
OV-101 | e, 3 -methyl- 2 - SE - 30 | azine
J&W Sci. SE-30 | -ol, 3-
sge se-30 | | - | | | | | | | | | | | | | trans-1,4-dichloro-Z | | | trans-1-phenyl-1-
SE-30 | | LTP
INDEX | butanol,
0716
0725
0725 | butanol, | butanone
0579 | butanone,
0652 | butanone,
0693 | butanone,
0646 | butaperazine
3308 J&W | buten-1-ol,
0609 SGE | butene,
0837 | butene,
1098 | butene,
1052 | butene,
1058 | butene,
1091 | butene,
0769 | butene,
0655 | butene,
0576 | butene,
0695 | butene,
1028 | butene,
0812 | butene,
0874 | butene,
0595 | butene,
0829 | butene,
0895 | butene,
0734 | butene,
0622 | butene,
1105 | | LIT | | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 53 | 46 | ω | 80 | 19 | 19 | 53 | . 19 | 38 | 19 | 38 | 23 | 33 | 4 4 | 25 | 25 | |--------------------------------|--|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--|--|--|---|--------------------------|--------------------------|--------------------------|-----------------------|-------------------------------|---|------------------|--|----------------------------|---------------------------------------|--------------------------|--------------------|---|-------------------------------------|--| | IER SAMPLE TYPE | um standard | nitrogen standard
helium standard | nitrogen food | nitrogen standard | nitrogen standard | standard | standard | nitrogen standard | standard | standard
standard | standard | standard | um standard | standard | um essential oil
standard
um standard | | standard | | GARIER
GAS | 4 helium | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 2 nitrog
4 helium | | | | | | 2 nitr | | 7 | | 8 | 5 helium | |) helium
5 helium | | | | LEN
(m) | | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | | 80 |) 50 | 0 50 | | | 20 | | • | | | Ħ | |) 50
0 25 | | 3.0 | | A (M) | | | | | | | | | 3.00 | 0.28 | 0.20 | 0.20 | | | -, | | 2.0 | | 2.0 | 0.25 | 0.25 | 0.30 | 3,0 | 3.00 | | COLUMN TYPE | <pre>l maleate) 3% w/w on Chromosorb W HP (80-100mesh)</pre> | 10%w/w on Celite 560 AW(60-80mesh) | 10%w/w on Celite 560 AW(60-80mesh) | 108W/w on Celite 560 AW(60-80mesh) | 10%w/w on Celite 560 AW(60-80mesh) | Srotonate)
10%w/w on Celite 560 AW(60-80mesh) | ate)
10%w/w on Celite 560 AW(60-80mesh) | ate)
10%w/w on Celite 560 AW(60-80mesh) | (mevinphos) 3% w/w on Chromosorb W HP (80-100mesh) 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | 25%w/w on Celite | 25%w/w on Celite | ?B) $3\% \text{ w/w on Chromosorb W HP (80-100mesh)}$ | 25%w/w on Celite | 15% w/w on Gas-Chrom Q (100-120 mesh) 25%w/w on Celite | 25%w/w on Celite | 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | 0 | bonded phase | 18 w/w on Gas-Chrom O (100-120mesh) | w/w on Gas-Chrom Q
w/w on Gas-Chrom Q | | COLUMN MATERIAL | r, cis- (disextyl
glass | yl ester
aluminium | pyl ester
aluminium | (butyl
Lluminiu | (ethyl crotonate) | O E | (pentyl
uminium | r (propyl crotonate)
aluminium | osphinyl)oxyl-2-
quartz glass
glass | gamma-lactone
glass | quartz glass | quartz glass | | ester | thylphenoxy) (MCPB)
quartz glass | thyl ester | | | | quartz glass | glas
glas | quartz
glass
glass
quartz qlass | | glass
glass | | COLUMN STATIONARY ORIGIN PHASE | acid, disextyl ester, OV-1 | 2-, 3-methylbut
SE-30 | 2-, 3-methylpro
SE-30 | 2-, butyl ester
SE-30 | 2-, ethyl este
SE-30 | 2-, isopropyl
SE-30 | , 2-, pentyl este
SE-30 | | id, 3-[(dimethoxy
SE-30
OV-1 | -methy1-2-,
OV-101 | -30 | ny1-1-
SE-30 | , z-hydroxy,
SE-30 | id, 2-methyl, methyl
SE-30 | ซ้ | | _ | acid, hexyl ester
SE-30 | ile
SE-30 | W Sci. SE-30 | Soi. SE-30
OV-1 | 1 OV-1
OV-1/SE-30
Me silicone | OV-1 | | | LTP CC
INDEX OF | · Ā | | butenoic ad
0983 | | ט | butenoic ad
0863 | | | υ ^Θ Ι | Ö | | | | butyric acid,
0758 | | υ | | butyric aci | butyronitril
0642 | cadaverine
0974 J&W | 1749 J&W : | 1777 Hal.
1810
1840 HP | campestenone
3320 | 3320
3325 | | LIT | 25
25
25 | 1 2 | 2 4 | 53 | 49 | 49 | 49 | i | 4
53 | 49 | 53 | 53 | 49 | 53
49 | 4.9 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 53
49 | 53 | |----------------------------|--|--|--|--|---|------------------------|--------------------------------------|--------------------------------|---|-----------------------------------|--|---|---|--|---------------------------------------|---|---|----------------------------|-------------------------------|---------------------------------|----------------------------------|--|--|--| | SAMPLE TYPE | standard
standard
standard | standard | | standard | standard | standard | standard | standard | standard
standard | standard | standard | standard | standard | standard
standard | standard standard
standard | standard
. standard | | N CARRIER
) GAS | 000 | 4 helium | | 2 nitrogen | 5 helium | 15 helium | 15 helium | 4 helium | 15 helium
2 nitrogen | ß | 2 nitrogen | 2 nitrogen | 5 helium | 2 nitrogen
5 helium | 5 helium | 5 helium | 15 helium | 2 nitrogen
15 helium | 2 nitrogen | | ID LEN (mm) (m) | 3.00 3.0
3.00 3.0
3.00 3.0 | 00. | | īΩ | .25 1 | .25 1 | .25 1 | .00 | 0.25 1 | .25 1 | Ŋ | 2 | 0.25 1 | 5 0.25 1 | 0.25 1 | 0.25 1 | 0.25 1 | 0.25 1 | 0.25 1 | 0.25 1 | 0.25 1 | 0.25 1 | 5 0.25 1 | ស | | COLUMN TYPE | 1% w/w on Gas-Chrom Q (100-120mesh) 3.
1% w/w on Gas-Chrom Q (100-120mesh) 3.
1% w/w on Gas-Chrom Q (100-120mesh) 3. | w/w on Chromosorb W HP (80-100mesh) 3 ester (methomyl) | bonded phase | ester (caromosorb W | (furadan 3 keto)
0 | ester (furadan) 0 | (Vegadex, Sullaifate) bonded phase 0 | Chromosorb W HP (80-100mesh) 3 | dimethyl ester (pirimicarb)
18e
Chromosorb W HP (80-100mesh) | (baygon, propoxur) | dene amino ester (aldicarb) 3% w/w on Chromosorb W HP (80-100mesh) | methyl e
3% w/w | methyl ester (matacil)
bonded phase | ester (barban) 3% w/w on Chromosorb W HP (80-100mesh) bonded phase | 1)
ase | (molinate)
bonded phase | r (tillam)
bonded phase | (sutan)
bonded phase | | nam, vernolate)
bonded phase | er (benthiocarb)
bonded phase | ester (roneet, cycloate)
bonded phase | (chlorpropham) 3% w/w on Chromosorb W HP (80-100mesh) bonded phase | 3% w/w on Chromosorb W HP (80-100mesh) | | COLUMN MATERIAL | glass
glass
glass | glass
ethylideneamino methyl | SE-30 quartz glass
1-naphthyl methyl ester (sevin)
DR-1 cmartz glass | 2,3-dihydro-2,2-dimethyl-7-benzofuranyl
SE-30 quartz glass 3% w/w | 2,3-dihydro-2,2-dimethylbenzofuran-7-yl methyl
DB-1 quartz glass | | lithio
glass | nethyldithio (CDEC)
glass | 2-dimethylamino -5,6-dimethylpyrimidin-4-yl
DB-1
cr-30 misrtz glass 3% w/w on | quartz glass | 2-methyl-2 (-methylthio) propylidene
SE-30 quartz glass | 3,5-dimethyl-4-methylthiophenyl
SE-30 quartz glass | 4-(dimethylamino)-3-methylphenyl
DB-1 quartz glass | | 'Y1 | lene, s-ethyl ester
quartz glass | nio, s-propyl ester
quartz glass | a-ethyl est
lartz glass | a-ethyl ester
quartz glass | s-propyl ester
quartz glass | ylthio
glass | -ethyl
glass | isopropyl ester (cl
quartz glass
quartz glass | glass
quartz glass | | STATIONARY
PHASE | ov~1
ov~1
ov~1 | OV-1
1-(methylthio)ethylide | SE-30
1-naphthyl met
nR-1 | 2,3-dihydro-2,
SE-30 | 2, 3-dihydro-2,
DB-1 | 2,3-dihydro-2,
DB-1 | 2-chlorcallyl
DB-1 | 2-chloroallyldıethyldı
OV-1 | 2-dimethylamin
DB-1
sr-30 | 2-isopropoxyphenyl methyl
NR-1 | 2-methyl-2(-me
SE-30 | 3,5-dimethyl-4
SE-30 | 4 - (dimethylami
DB-1 | 4-chlorobut-2-
SE-30
DB-1 | 4-methylthio-3,5-xylyl
DB-1 quartz | N,N-hexamethylene, s-ethyl
DB-1 quartz glass | butyl(ethyl)thio, s-propyl
DB-1 quartz glass | diiosbutylthio-,
DB-1 q | dipropylthio,
DB-1 | dipropylthio-,
DB-1 | a-4-chlorobenzyl
DB-1 | -ethyl-N-cy
DB-1 | m-chloro,
SE-30
DB-1 | OV-1/SE-30
SE-30 | | LTP COLUMN
INDEX ORIGIN | er | id, | 1059 PEC
carbamic acid, 1 | nic acid,
PEC | acid, | | | carbamic acid, 2
1685 | ic acid, | id, | ic acid,
PEC | c acid,
PEC | carbamic acid, 4
1743 | carbamic acid, 4
1102 PEC
2119 | carbamic acid, 4 | carbanic acid, N
1539 | acid, | acid, | carbamic acid, c | carbamic acid, c | | iid, | carbanilic acid,
1626 PEC
1629 | carbaryl
1490
1494 PEC | | LIT
REF | 55
56
55
55 | 23 | 23 | 46 | т | 48 | 48 | 23 | 12 | 12 | 10 | 12 | 12 | 12 | 10 | 10 | 10 | 12 | 10 | 10 | 12 | 12 | 10 | 48 | |-------------------------|---|--------------------------|---|----------------------------------|-------------------------------|---------------------------------------|---|-----------------------------------|--|---|--|---|----------------------------|-------------------------------|-----------------------------------|-------------------------------|-----------------------------------|----------------------------|--------------------------|--|---|----------------------------|--|---| | SAMPLE TYPE | standard
standard
standard
standard | standard | standard
standard | food | essential oil | standard ı standard | standard | n | LEN CARRIER (m) GAS | 4 helium
25 hydrogen
12
12
25 hydrogen | 15 helium | 15 helium
1.5 argon | 80 nitrogen | 50 helium | 25 hydrogen | 25 hydrogen | 15 helium | 25 nitrogen hydrogen | | I DI (mm) | 3.00
0.31
0.20
0.20
0.31 | 0.25 | 4.00 | 0.28 | 0:30 | 0.22 | 0.22 | 0.25 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.22 | | COLUMN TYPE | 3% w/w on Chromosorb W HP (80-100mesh) bonded phase bonded phase bonded phase bonded phase bonded phase | wall-coated open tubular | wall-coated open tubular
derivative
10% w/w on Diatoport S (80-100mesh) | wall-coated open tubular | bonded phase | wall-coated open tubular | COLUMN MATERIAL | glass
glass
quartz glass
quartz glass | quartz glass | quartz glass
trimethylsilyl der | дјавв | quartz glass | quartz glass | quartz glass | quartz glass | ylpropyl ester
quartz glass | ylpropyl ester
quartz glass | -butenyl ester
quartz glass | tyl ester
quartz glass | opyl ester
quartz glass | | | quartz glass | quartz glass | ityl ester
quartz glass | . ester
quartz glass | nnyl ester
quartz glass | hyl ester
quartz glass | quartz glass | axenyı ester
quartz glass | quartz glass | | STATIONARY
PHASE | OV-1
OV1-1/SE-54
Me silicone
Me silicone
OV1-1/SE-54 | SE-30 | SE-30
3-indoly1,
OV-1 | eta-
OV-101 | 0V-1 | cP sil 5CB | CP Sil 5CB | SE-30 | d, 1,1-dimeth
SE-30 | d, 1,2-dimeth
SE-30 | acid, 1-methyl-3-butenyl
SE-30 quartz g | acid, 1-methylbutyl ester
SE-30 quartz g | 124 | ᄪ | | d, 2-propynyl
SE-30 | 12. | 124 | | d, cis-3-hexenyl ester
SE-30 quartz g | acid, dimethylethyl ester
SE-30 quartz g | acid, methylethyl
SE-30 | acıd, trans-3-nexenyı ester
SE-30 quartz gla: | CP Sil 5CB | | LTP COLUMN INDEX ORIGIN | le
HP
HP | E . | carbinoxamine
2047 J&W Sci.
carboxylic acid, | caryophyllene, beta-
1442 OV- | cedrenyl acetate
1752 Hall | chlordane, alpha~
2050 CHROMPAK CP | chlordane, gamma-
2018 CHROMPAK CP Sil | chlordiazepoxide
2742 J&W Sci. | chloroacetic acid, 1,1-dimethylpropyl ester 0995 SGE SE-30 | chloroacetic acid, 1,2-dimethylpropyl 1012 SGE SE-30 quartz | chloroacetic aci | chloroacetic aci | | chloroacetic acid, 0956 SGE S | chloroacetic acid,
0870 SCE SE | chloroacetic acid, 0885 SGE S | chioroacetic acid,
0969 SGE SE | | | chloroacetic acid, 1182 SGE SI | chloroacetic
aci
0891 SGE | | n | chlorodane, oxy
1982 CHROMPAK CP Sil | | LIT
REF | 48 | 48 | 40 | 23 | 49 | 23 | 23 | 23 | 23 | 47 | 25 | 25 | 25 | 1 | 2.5 | 25 | 25 | 25 | 1
23 | 4
28 | 25 | 25 | 25
25 | 56
30 | 23 | |-------------------------|--------------------------|-------------------------------------|---|---------------------------------|-----------------------------------|----------------------------------|-----------------------------------|---|-------------------------------|-------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---|----------------------|-------------------------------------|-------------------------------------|--|--|-----------------------------| | SAMPLE TYPE | standard standard
standard | Btandard | standard standard
standard | standard
standard | standard | standard | standard
standard | standard
standard | standard | | N CARRIER
) GAS | 5 hydrogen stan | 5 hydrogen stan | 50 nitrogen star | 15 helium stan | 15 helium star | 15 helium star | 15 helium star | 15 helium star
25 helium star | 15 helium star | 25 helium star | .0 star | .0 star | .0 star | 4 helium star | .0 star | .0 star | .0 star | .0 star | 4 helium
5 helium | ne | .0 star | | | 12
25 nitrogen star | 5 helium | | ID LEN (mm) (m) | 0.22 2 | 0.22 2 | 0.2 5 | 0.25 1 | 0.25 1 | 0.25 1 | 0.25 1 | 0.25 1 | 0.25 1 | 0.20 | 3.00 3. | 3.00 3. | 3.00 3. | 3.00 | 3.00 3. | 3.00 3. | 3.00 3. | 3.00 3. | 3.00 | | 3.00 3. | 3.00 3.0 | 3.00 3.0
3.00 3.0 | 0.20 | 0.25 1 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | 1% w/w on Gas-Chrom Q (100-120mesh) | 1% w/w on Gas-Chrom Q (100-120mesh) | 18 w/w on Gas-Chrom Q (100-120mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 1% w/w on Gas-Chrom Q (100-120mesh) | 18 w/w on Gas-Chrom Q (100-120mesh) | 18 w/w on Gas-Chrom Q (100-120mesh) | 18 w/w on Gas-Chrom Q (100-120mesh) | 3% w/w on Chromosorb W HP (80-100mesh) wall-coated open tubular | bonded phase | 18 w/w on Gas-Chrom Q (100-120mesh) | 1% w/w on Gas-Chrom Q (100-120mesh) | 1% w/w on Gas-Chrom Q (100-120mesh)
1% w/w on Gas-Chrom Q (100-120mesh) | bonded phase
wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | quartz glass | quartz glass | ər
quartz glass | quartz glass | ab.)
quartz glass | quartz glass | quartz glass | quartz glass
quartz glass | quartz glass | quartz glass | glass
gnartz glass | glas | glass | glass | glass
glass | quartz glass
quartz glass | quartz glass | | N STATIONARY
N PHASE | 1 0 | gamma~
MPAK CP Sil 5CB | chloroformic acid, methyl ester
0569 Me silicone q | i. SE-30 | , p- (fundal metab.)
DB-1 quar | e
i. SE-30 | ne
i. SE-30 | i. SE-30
Me silicone | e
i. SE-30 | Me silicone | -one
OV-1 | ov-1 | dien-3-one
OV-1 | 5alpha-
ov-1 | 00-1 | OV-1 | OV-1 | 24-oxo
OV-1 | OV-1 | | 24-oxo
OV-1 | 4,4-dimethyl
OV-1 | 7-dehydro
OV-1
OV-1 | Me silicone
SE-30 | i. SE-30 | | LTP COLUMN INDEX ORIGIN | ıð | chlorodene, garmie
1902 CHROMPAK | chloroformic a
0569 | chloroprocaine
2177 J&W Sci. | chlorotulidine
1272 | chlorpentermine
1329 J&W Sci. | chlorpheniramine
1972 J&W Sci. | chlorpromazine
2452 J&W Sci
2526 HP | chlorprothixene 2460 J&W Sci. | chlorpyrifos
1982 HP | cholest-7-en-3-one
3165 | cholest~/-en-3beta~or
3135 OV-1 | CI. | | cholestanol
3115 | cholestanone
3145 | cholestenone
3220 | ō | cholesterol
3008
3041 JEW Sri | 1 | | | rol, | chrysene
2405 HP
2465 SGE | cinchocaine
2675 J&W Sci | | LIT | 13 | 20 | 19 | 21 | 20 | 20 | 1 0 | 21 | 20 | 20 | 20 | 19 | 5 | 1 1 | 21 | 20 | 19 | 21 | ¦ | 20 | 21
20 | 19 | 19 | 19 | 19 | 19 | 23 | 19 | |---|----------------------------------|--|---------------------------|-----------------------------------|-----------------------------------|----------------------------|------------------------|--------------------------------|-------------------------|------------------------|-------------------|-------------------|--------------------------------|------------------|---------------------------------------|----------------------------|------------------|--------------------------|---------------------------------------|------------------------------------|---|-----------------------|----------------------|------------------|-------------------------|----------------------------|--------------------------|---------------------------| | ID LEN CARRIER SAMPLE TYPE (mm) (m) GAS SAMPLE TYPE | 3.20 6.1 nitrogen standard | 5.50 2.4 nitrogen standard | standard | 4,00 1.5 argon standard | 5.50 2.4 nitrogen standard | 5.50 2.4 nitrogen standard | 2.4 nitroden | 1.5 ardon | 2.4 nitrogen | 2.4 nitrogen | 2.4 nitrogen | S | 4.00 1.5 argon standard | n
1 | 1.5 argon | 5.50 2.4 nitrogen standard | standard | 4.00 1.5 argon standard | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5.50 2.4 nitrogen standard | 4.00 1.5 argon standard
5.50 2.4 nitrogen standard | standard | standard | standard | standard | standard | 0.25 15 helium standard | standard
standard | | COLUMN TYPE | on Chromosorb W HMDS (60-80mesh) | derivative
13% w/w on Chromosorb W AW | 25%w/w on Celite | % w/w on Diatoport S (80-100mesh) | ive
13% w/w on Chromosorb W AW | Chromosorb W | Chromosorb W AW | re
Diatoport S (80-100mesh) | W AW | 3 | W AW | | 70 W/W % | ı t | % w/w on Diatoport S (80-100mesh) | 13% w/w on Chromosorb W AW | 25%w/w on Celite | iatoport S (80-100mesh) | (400-100-1) | b w/w on Directoric S (80-100mesn) | k w/w on Diatoport S (80-100mesh)
k w/w on Chromosorb W AW | 25%w/w on Celite | wall-coated open tubular | 25%w/w on Celite | | STATIONARY PHASE COLUMN MATERIAL | stainless steel | oxy, trimethylsilyi | methyl ester | oxy, trimethylsilyl derivative 10 | oxy, trimethylsilyl derivative 0 | rimethoxy, trimethylsilyl | ydroxy, trimethylsilyl | hydroxyphenyl, t | methoxy, trimethylsilyl | ethoxy, trimethylsilyl | ethoxy-4-hydroxy, | oxy, methyl ester | oxy, trimethylsilyl derivative | oxy-4-methoxy, t | 10°
oxy, trimethylsilyl derivative | 0
over mother autor | Tools + Eurom | trimethylsi | oxy-3-methoxy, t | | oxy, trimethylsilyl derivative
103
0 | ester
0 | γ l ester 0 | | | escer
0
5+1:-1 54-5- | cuyr est | OV-1/5E-30 glass
SE-30 | | COLUMN STAT | ! | | acid, 2-hydroxy,
SE-30 | acid, 2-hydroxy,
OV-1 | acid, 2-methoxy, SE-30 | acid, 3,4,5-t | acid, 3,4-dih | acid, 3,4-dil | acid, 3,4-dim | acid, 3,5-dim | acid, 3,5-dim | acid, 3-hydroxy, | acid, 3-hydroxy, | acid, 3-hydro | OV-1
acid, 3-methoxy, | SE-30 | _ | acid, 4-hydroxy,
OV-1 | acid, 4-hydro | OV-1
SE-30 | acid, 4-methoxy,
OV-1
SE-30 | acid, benzyl
SE-30 | | | Acid, labbucyt
SE-30 | acia, metnyi
SE-30 | Jew Sci. SE-30 | OV -1/
SE-30 | | LTP | | cinnamic
2012 | cinnamic
1430 | cinnamic
1800 | cinnamic
1754 | ic | ic | i. | ы.
С | , c | j. | Ö. | Ö | jc | 2054
cinnamic | | 1498 | cinnamic
1928 | Ö | 2080 | cinnamic
1796
1803 | cinnamic
1682 | r.
C | | | | , J | 2143 | | LIT | 21
20 | 23 | - | - | - | 7 | - | п | 13 | 13 | 55
55
4 | 23 | 23 | 23 | 23
4
47 | 23 | 23 | 55
55 | 47 | 23 | 48 | |---------------------------|---|-----------------------------------|--|--|--|--|--|--|---|---|--|------------------------------|--------------------------|------------------------------|---|--------------------------|--------------------------|-------------------------------------|---------------------------|---|--| | SAMPLE TYPE | standard
standard | standard standard
standard
standard | standard
standard | standard | standard
standard | standard
standard
standard | standard | standard | standard
standard | standard | standard
standard | standard
standard | | LEN CARRIER (m) GAS | 1.5 argon
2.4 nitrogen | 15 helium | 4 helium | .1 nitrogen | 6.1 nitrogen | 25 hydrogen
25 hydrogen | 15 helium
25 helium | 15 helium | 15 helium
25 helium | 15 helium
25 helium | 15 helium | 15 helium | 25 hydrogen
25 hydrogen | 25 helium | 5 15 helium (chlordecone) 0 4 helium (mirex) | 25 hydrogen
4 helium | | ID L | 4.00 1
5.50 2 | 0.25 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.20 6 | 3.20 6 | 0.31 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.31 | 0.20 | 0.25
2H- (cl)
3.00 | | | COLUMN TYPE | 10% w/w on Diatoport S (80-100mesh) 413% w/w on Chromosorb W AW |
wall-coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) 3 | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 10%w/w on Chromosorb W HMDS (60-80mesh) | 10%w/w on Chromosorb W HMDS (60-80mesh) | bonded phase
bonded phase | wall-coated open tubular | bonded phase
bonded phase | | wall-coated open tubular, 5b, 6-decachlorocotahydro-1,3,4-metheno-3% w/w on Chromosorb W HP (80-100mesh) 5b,6-dodecachlorocotahydro-1.3,4-metheno | wall-coated open tubular
3% w/w on Chromosorb W HP (80-100mesh) | | COLUMN MATERIAL | derivative | quartz glass | glass | ester
glass | ester
glass | glass | glass | glass | stainless steel | stainless steel | glass
glass
glass | quartz glass
quartz glass | quartz glass | quartz glass
quartz glass | quartz glass
glass
quartz glass | quartz glass
t | quartz glass | glass
glass | quartz glass | quartz glass
one, 1,1a,3,3a,4,5,5,5a
glass
1 1 2 2 3 3 4 4 5 5 5 5 | - O | | MN STATIONARY
IN PHASE | rimethylsilyl
OV-1
SE-30 | SE-30 | | Φ
Ω | iethyl es | ester | ester | trimethyl ester
OV-1 | SE-30 | SE-30 | OV1-1/SE-54
OV1-1/SE-54
OV-1/SE-30 | Sci. SE-30
Me silicone | Sci. SE-30 | Sci. SE-30
Me silicone | Sci. SE-30
OV-1/SE-30
Me silicone | 1758 J&W Sci. SE-30 q | Jew Sci. SE-30 | ov1-1/SE-54 | Me silicone | . SE-30
ntalen-2-
OV-1 | | | LIFP COLUMN INDEX ORIGIN | cinnamic acid,
1497
1527 | cinnamoylcocaine
2480 J&W Sci. | citral
1272 | acid, | acid, | | acid, | citric acid,
1442 | citronellal
1146 | citronellol
1225 | clofibrate
1456 HP
1481 HP
1549 | 3 | JDGW | J&W
HP | 34 di | 1758 J&W Sci. | 1828 JEW S | cyanoacetic a
0958 HP
0960 HP | cyclobarbitone
1973 HP | cyclobenzaprine
2204 J&W Sci. SE-30
cyclobuta[cd]pentalen-2
2240 OV-1 | 2445 CHROM | | LLIT
REF | 1 | 39
8 | 39
38 | 40 | 40 | 8
6
6 | 41 | 98
8 | 39 | 39 | 39 | 39 | 39 | 39
8 | & 6
17 | 8 | 6 8 | 39 | œ | 80 | 32 | 2 2 3.7 | 37
37 | , m | |-----------------------------|--|--|---|--------------------------|----------------------------|--|-------------------------------------|--|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------|--|--------------------------|----------------------------|----------------------------|--------------------------|--------------------------|----------------|---|--|----------------| SAMPLE TYPE | standard | standard
standard
standard | standard
standard | standard | standard | standard
standard | standard | standard
standard | standard | standard | standard | standard | standard | standard
standard | standard
standard | standard | standard | standard | ı standard | standard | standard | cap water
standard
standard | standard
standard | essential oil | | ID LEN CARRIER (mm) (m) GAS | 3.00 4 helium | 3.18 3.1 helium
0.20 50 nitrogen | 3.18 3.1 helium
2.0 2 | .2 50 nitrogen | .2 50 nitrogen | 0.20 50 nitrogen
3.18 3.1 helium | .32 15 helium | .18 3.1 helium | .18 3.1 helium | .18 3.1 helium | .18 3.1 helium | 1.18 3.1 helium | 1.18 3.1 helium | 3.18 3.1 helium
0.20 50 nitrogen | 0.20 50 nitrogen
3.18 3.1 helium | 0.20 50 nitrogen | 3.18 3.1 helium | 3.18 3.1 helium | 0.20 50 nitrogen | 0.20 50 nitrogen | 0.5 100 helium | 0.25 108 helium | | 0.30 50 helium | | COLUMN TYPE | 3% w/w on Chromosorb W HP (80-100mesh) 3 | wall-coated open tubular 0
Supelcoport (100-200 mesh) 3
wall-coated open tubular 0 | Supelcoport (100-200 mesh)
15% w/w on Gas-Chrom Q (100-120 mesh) 2 | Wall-coated open tubular | wall-coated open tubular 0 | Wall-coated open tubular 0
Supelcoport (100-200 mesh) 3 | wall-coated open tubular | Supelcoport (100-200 mesh) 3
wall-coated open tubular 0 | Supelcoport (100-200 mesh) 3 | Supelcoport (100-200 mesh) | wall-coated open tubular
Supelcoport (100-200 mesh) | wall-coated open tubular | Supelcoport (100-200 mesh) | Supelcoport (100-200 mesh) | wall-coated open tubular | wall-coated open tubular | open tubular | Wall-coated open tubular wall-coated open tubular | Wall-coated open tubular
wall-coated open tubular
wall-coated open tubular | hase | | COLUMN MATERIAL | glass | quartz glass
stainless steel
quartz glass | stainless steel | quartz glass | quartz glass | quartz glass
stainless steel | quartz glass | stainless steel
quartz glass | stainless steel | hyl
stainless steel | stainless steel | stainless steel | stainless steel | stainless steel
quartz glass | quartz glass
stainless steel | quartz glass | -
stainless steel | -
stainless steel | quartz glass | quartz glass | glass | | borosilicate glass
borosilicate glass | guartz glass | | STATIONARY
PHASE | 0V-1 | 1,3-
SE-30
SE-30
SE-30 | SE-30
SE-30 | bromo
Me silicone | chloro
Me silicone | , 1,3,5-
SE-30
SE-30 | , 1-methoxy
DB-1 | SE-30
SE-30 | | 1-bromo-4-methyl
SE-30 | 1-chloro
SE-30 | 1-iodo
SE-30 | 1-nitro
SE-30 | 1,3-
SE-30
SE-30 | 1,4-
SE-30
SE-30 | 1-ethyl-1,4-
SE-30 | 1-methoxy-1,3
SE-30 | 1-methoxy-1,4-
SE-30 | 1-methyl-1,3-
SE-30 | SE-30 | SE-30 | SP-2100
OV-101 | SE-30
OV-1 | 0V-101 | | LTP COLUMN INDEX ORIGIN | cyclododecanone
1524 | cycloheptadiene,
0800
0811 HP
0815 | cycloheptane
0794 HP
0797 | | cycloheptane, ch
1026 | cycloheptatriene,
0784 S | cycloheptatriene,
0994 J&W SCI D | | | cyclohex-1-ene,
1036 HP | | | | | | | | cyclohexadiene,
0939 HP | cyclohexadiene,
0771 | cyclonexaclene,
0800 | ŏ | | 0661 PEC
0662 PEC | 0662 Hall | | нци | | | | | | | | | | | |--|---|--|---|-------------------------------------|--|--|--|--|---|--| | SAMPLE TYPE | standard
standard
standard
standard
standard | essential oil
tap water
standard | standard
standard
standard | standard
standard | standard
standard
standard
standard
standard | standard
standard
standard
standard | standard
standard
essential oil
tap water
standard | standard
standard
standard | standard
standard
standard | standard
standard | | ID LEN CARRIER (mm) (m) GAS | 3.18 3.1 helium
0.30 50 helium
0.30 50 helium
0.20 50 nitrogen
2.0 2 | 50 | 0.25 108 helium
0.25 108 helium
0.25 108 helium | 0.25 108 helium
0.20 50 nitrogen | 0.22 25
0.32 50
3.00 4
0.2 50 | 0.32 50
3.00 4
0.2 50
0.2 50
3.18 3.1 | 0.25 108 helium
0.30 50 helium
0.30 50 helium
0.20 50 nitrogen | 0.2 50 nitrogen 3.18 3.1 helium 0.25 108 helium | 108 | 0.25 108 helium
0.20 50 nitrogen | | COLUMN TYPE | Supelcoport (100-200 mesh) bonded phase bonded phase wall-coated open tubular 15% w/w on Gas-Chrom Q (100-120 mesh) | open tubul | <pre>wall-coated open tubular wall-coated open tubular wall-coated open tubular</pre> | wall-coated open tubular | wall-coated open tubular bonded phase 3% w/w on Chromosorb W HP (80-100mesh) wall-coated open tubular wall-coated open tubular | bonded phase 3% w/w on Chromosorb W HP (80-100mssh) wall-coated open tubular wall-coated open tubular Supelcoport (100-200 mesh) | wall-coated open tubular
bonded phase
bonded phase
wall-coated open tubular
wall-coated open tubular | lcoport (100-coated open | uedo
oben | <pre>wall-coated open tubular wall-coated open tubular</pre> | | COLUMN MATERIAL | stainless steel
quartz glass
quartz glass | quartz glass
glass
quartz glass | glass
glass
glass | | (alpha-
quartz
quartz
glass
quartz
(beta-BE | | glass
quartz glass
quartz glass
glass
quartz glass | n cu | 7 7 7 | glass
quartz glass | | LTP COLUMN STATIONARY INDEX ORIGIN PHASE | cyclohexane (cont) 0662 HP SE-30 0664 Hall OV-1 0669 Hall OV-1 0669 SE-30 | 6 6 | | an an | CHROMPAK CP Sil 5CB SAC OV-1 OV-1 Me silicone exane, beta-hexachloro CHROMPAK CP Sil 5CB ACHOMPAK CP Sil 5CB | OV-1
OV-1
OV-1
Dromo
Me sil: | 4 - | xane, Chloro Me silicone HP SE-30 xane, cis,cis,cis-1,3, Quadrex OV-101 xane, cis,cis,trans-1, | Quadrex OV-101 grane, cis, trans, cis-1, grane, cis, trans, cis-1, Quadrex OV-101 grane, cis, trans, trans- Quadrex
OV-101 axane, cis, trans, trans- grane, cis-1, 2-dimethyl | 0820 Quadrex OV-101
0834 SE-30 | | LIT | | 2 | 37 | 80 | 40 |) | 80 | ć | 7 | 2 | 8 | 8 | | 40 | 80 | | œ | 66 | | 23 | 77 C | 8 4 | r et | 7 | · | 40 | 28 | i
I | 40 | ņ | m | നി | ດເ | 1 œ | | ກຕ | na | 0 0 | 37 | 3 6 | ထားထ | j
j | |---------------------|------------------|----------|--------------------------|--------------------------|--------------------------|------------------|--------------------------|---------|---------------------------|--------------------------|---|--|------------------|--|--------------------------|--------------|--------------|----------------------------|---|-------------|--------------------------|-----------------------|---------------------------|------------|---------------|--------------------------|--------------|--------|---------------------------------|----------|---------------|----------|--------------------------|--------------|--------|--|---------------------------|---------|----------|------------|---|--------| | SAMPLE TYPE | | standard | standard | standard | atandard | | standard | 4 | standard | standard | standard | standard | | standard
standard | standard | 4 | scandard | standard | | standard | standard | Brandard | standard | standard | standard | standard | standard | | standard | acainata | essential oil | standard | tap water | gtandard | | tap water | ecandard
Aggential oil | | standard | standard | standard
standard | | | LEN CARRIER (m) GAS | | | 100 | 50 nitrogen | 50 nitrogen | | 50 nitrogen | 100 100 | 00. | 108 helium | 108 helium | 108 helium | | 4 helium
50 nitrogen | 50 nitrogen | ď | | 3.1 helium | | 12 | 2 2 | | 2 nitrogen | | 4 | 50 nitrogen | 50 hydrogen | | 50 nitrogen | | 50 | | 108 helium | 20 | ı | 1 50 helium | 50 | 108 | 100 | 3.1 | 50 nitrogen | | | (mm) | | 0.25 | 0.27 | 0.20 | 0.2 | | 0.20 | Ċ | 7 | 0.25 | 0.25 | 0.25 | | 3.00 | 0.20 | 0 | 0.40 | 3.18 | | 0.25 | 0.6 | 0.32 | īΟ | | e | 0.5 | 0.32 | | 9.5 | | 0.30 | 0.30 | 0.25 | 0.20 | | 3.0 | 0.30 | 0.25 | 0.27 | 3.18 | 0.20 | | | | | | | | | | | | | | | | | (80-100mesh) | | | | | | | | | (80-100mesh) | • | (80-100mesh) | | | | | | | | | | | | | | | | 0-120 mesh) | | | COLUMN TYPE | | oben | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | • | wall-coated open tubular | 1000 | coarea oben | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | 3% w/w on Chromosorb W HP wall-coated open tubular | wall-coated open tubular | | | Supelcoport (100-200 mesh) | | open tubul | Wall-coated open tubular | political pliase | 3% w/w on Chromosorb W HP | | romosorb W HP | wall-coated open tubular | bonded phase | | wall-coated open tubular | | bonded phase | | wail-coated open tubular | uedo | | wall-coated open tubular
bonded nhase | bonded phase | | | (100- | wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | | | COLUMN MATERIAL | | glass | soda glass | quartz glass | martz alass | | quartz glass | chyl | grass | glass | chyl
glass | sopropyl
glass | (delta-BHC) | glass
quartz glass | quartz qlass | , 7 | quartz grass | at | | | 5 | quariz grass
glass | grass
quartz qlass | , , | m | quartz glass | quartz glass | 1 | quartz glass
stainless steal | 1 | glas | | g.a.s.s. | quartz glass | | grass
martz dlass | glas | , | Jass | 888 | quartz glass | | | | cis-1,3-dimethyl | c OV-101 | ov-101 | SE-30 | cis-1,4-dichloro | cis-1,4-dimethyl | SE-30 | | cis-1-ethyl-3-methyl | Quadrex OV-101 | cyclohexane, cis-1-ethyl-4-methyl 0904 Quadrex OV-101 gla | cyclohexane, cis-1-methyl-4-isopropyl
0984 Quadrex OV-101 glass | delta-hexachloro | OV-1
Me silicone | ethyl
SE-30 | ethylidene | 35-30 | SE-30 | | . SE-30 | K CF S11 5CB | OV-1 /SE-30 | SE-30 | OV-1/SE-30 | ov-1 | Me silicone | 0V-1 | iodo | Me silicone | opropy! | 00-1 | 001-100 | | | methyl | | | | OV-101 | SE-30 | SE-30 | | | COLUMN | | | PEC | | | | | | | Quadres | ane, cis
Quadrex | cane, cis
Quadrex | ane, de | | | | | | | U2 : | CHROMPAK | 5AC | PEC | <u>.</u> | | | | | QH. | | | Hall | Ouadrex | | | Superco | Hall | Quadrex | PEC | HP | | | | LTP
INDEX | cyclohexane, | 0770 | 0776 | 0804 | cyclohexane, | cyclohexane, | 0810 | × | 0921 Quad
cvclohexane, | 0881 | cyclohexa
0904 (| cyclohexa
0984 (| cyclohexane, | 1755 | cyclohexane,
0837 | cyclohexane, | 0870 | cyclonexane,
0738 HP | 8 | 1682 | 1694 | | | | 1757 | 1797 | 1645 | ~ | 1067 | Č | 1 0160 | | | 0915 | 63 | 0715 | | | | | 0/30
0736 | | | LIT
REF | 80 | ഗത | m | 0 W | 39 | ^ | 100 | 40 | . ' | 74 CC | • | œ | 40 | · | 37 | . | c | 7 | 7 | ٥ | 0 | 99 |) | 9 | 6 8
3 8 | 39 | , . |) | 39 | 39 | 9.
6. | ~ | n ro en | |---------------------------|--------------------------|--|------|--|----------------------------------|--------------------------|--------------|--------------------------|-----------------|---|----------|-----------------------------|--------------------------|--------------------------|---------------------|-----------------|-------------------------|---|--------------------------|--------------------------|-------------------------|--|----------|----------------------------|---|----------------------------|---------------------|---------|----------------------------|----------------------------|----------------------------|--------------------------|--| | SAMPLE TYPE | standard | tap water
essential oil | | standard
standard | standard | standard | standard | standard | | standard
standard | | standard | standard | at ordered | standard | standard | 7 | scandard | standard | 71000 | aralidatu. | standard | | standard | standard
standard | standard | essential oil | | standard | standard | standard | essential oil | | | D LEN CARRIER n) (m) GAS | 20 50 nitrogen | .30 50 helium | 20 | 25 108 helium
20 50 nitrogen | .18 3.1 helium | 25 108 helium | 50 | 2 50 nitrogen | • | 25 108 hellum
20 50 nitrogen | | .zu su nitrogen | 2 50 nitrogen | 75 108 helium | 100 | .20 50 nitrogen | 100 | | 25 108 helium | 20 50 nitrogen | 3 | .18 3.1 helium | 1 r | .18 3.1 hellum | 18 3.1 helium
0 2 | 18 3.1 helium | 50 |)
) | .18 3.1 helium | .18 3.1 helium | 18 3.1 helium | 30 50 helium | 3.1 | | OI (mm) | 0.20 | 0 | 0.30 | 0.25 |
 | 0.2 | 0.20 | 0.2 | • | 0.20 | | 2 | 0.2 | c | 0.27 | 0. | | | 0.2 | 0.00 | • | m 0 | | n | 3.18 | 3,18 | O | , | 3.1 | 3.1 | 3.18 | 0.30 | 3.18 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular
bonded phase | | wall-coated open tubular
wall-coated open tubular | Supelcoport (100-200 mesh) | wall-coated open tubular | open | wall-coated open tubular | • | wall-coated open tubular wall-coated open tubular | • | wall-coated open tubular | wall-coated open tubular | wall-coated onen tubular | oben | open | me ledge to to the last | oben | wall-coated open tubular | wall-coated onen tuhular | 1113435 2545 50000 1111 | Supelcoport (100-200 mesh) 15% w/w on Gas-Chrom O (100-120 mesh) | 006-0017 | supercoport (100-200 mesn) | Supelcoport (100-200 mesh)
15% w/w on Gas-Chrom Q (100-120 mesh) | Supelcoport (100-200 mesh) | - 6 | | Supelcoport (100-200 mesh) | Supelcoport (100-200 mesh) | Supelcoport (100-200 mesh) | bonded phase | wall-coated open tubular
Supelcoport (100-200 mesh) | | COLUMN MATERIAL | quartz glass | glass
cnartz class | ימי | glass
quartz glass | stainless steel | 880 <u>-</u> | guartz glass | sthyl
quartz qlass | . | glass
quartz qlass | · ' | quartz glass | quartz glass | /]
 | grass
soda qlass | z gl | nethyl
zlag | grass
isopropyl | glass | marty dlagg | 1
1
1 | stainless steel | | scainless steel | stainless steel | stainless steel | quartz qlass | 1 | stainless steel | stainless steel | stainless steel | quartz qlass | 103 | | MN STATIONARY
IN PHASE | methylene
SE-30 | propyl
SP-2100
OV-1 | 0V-1 | OV-101
SE-30 | nitro
SE-30 | -101 | SE~30 | tetradecafluoromethyl | ans-1,2-dimethy | OV-101
SE-30 | -dimethy | SE-30
trans-1 4-dichloro | Me silicone | ans-1,4-dimethy | OV-101 | SE-30 | hyl-2-n | Quadrex 0v-101
gane, trans-1-methvl-4-isopropv | ex OV-101 | vinyl
SE-30 | | SE-30
SE-30 | 3-methyl | | | , 3-methyl
SE-30 | , 4-t-butyl
OV-1 | -01, 2- | SE-30 | ເດ | -one, 3:mecny1-2-
SE-30 | OV-1 | SP-2100
SE-30 | | LTP COLUMN INDEX ORIGIN | | cyclohexane, n-1
0921 Supelco | | 0923 Quadrex
0931 | cyclohexane, nitro
1079 HP SI | cyclohexane, phenyl | 1314 | cyclohexane, 1 | exane, | 0792 Quadrex
0804 | exane, | 0783 | | cyclohexane, tra | | | xane, | cvelohexane, 1 | 0970 Quadrex | cyclohexane, vinyl | cyclohexanol | 0885 HP | exanol, | cvclohexanone | 0081 HP | cyclohexanone,
0945 HP | cyclohexanone, | exen-1 | 0887 HP | O920 HP | - | cyclohexene
0661 Hall | 0661 Supelco
0667 HP | | LIT | 3882 | æ | 8 | 3 8 6 | & | 40 | 8 6
8 | 3 8 | 38 | 39 | 39 | 23 | 8 6
6 | 39
14 | 39 | 8 66 | σ. | æ | 28
40 | 23 | |---------------------|---|--------------------------|--------------------------|--
--------------------------|--------------------------|--|--|---|----------------------------|-----------------------------|--------------------------|--|--|---|--|--------------------------|--------------------------|--|---------------------------------| | SAMPLE TYPE | standard
standard
standard | standard | standard | standard
standard
standard | standard | standard | standard
standard | øtandard
øtandard | standard
standard | standard | standard | standard | standard
standard | standard
standard
standard | standard | standard
standard | standard | standard | standard
standard | standard | | LEN CARRIER (m) GAS | 5 108 helium
0 50 nitrogen
2 | 0 50 nitrogen | 0 50 nitrogen | 5 108 helium
0 50 nitrogen
8 3.1 helium | 0 50 nitrogen | 50 nitrogen | 0 50 nitrogen
8 3.1 helium | 0 50 nitrogen
8 3.1 helium | 0 50 nitrogen
2 | 8 3.1 helium | 8 3.1 helium | 5 15 helium | 0 50 nitrogen
8 3.1 helium | 0 50 nitrogen
8 3.1 helium
0 25 helium | 8 3.1 helium | 0 50 nitrogen
8 3.1 helium | 0 50 nitrogen | 0 50 nitrogen | 2 50 hydrogen
50 nitrogen | 5 15 helium | | | 0.25
0.20
2.0 | 0.20 | 0.20 | 0.25
0.20
3.18 | 0.20 | 0.2 | 3.18 | 3.18 | 0.20 | 3.18 | 3.18 | 0.2 | 0.20 | 0.20
3.18
0.50 | 3.18 | 0.20 | 0.20 | 0.20 | 0.32 | 0.25 | | COLUMN TYPE | wall-coated open tubular
wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular wall-coated open tubular Supelcoport (100-200 mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
Supelcoport (100-200 mesh) | wall-coated open tubular
Supelcoport (100-200 mesh) | wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | Supelcoport (100-200 mesh) | Supelcoport (100-200 mesh) | wall-coated open tubular | wall-coated open tubular
Supelcoport (100-200 mesh) | wall-coated open tubular
Supelcoport (100-200 mesh)
wall-coated open tubular | Supelcoport (100-200 mesh) | wall-coated open tubular
Supelcoport (100-200 mesh) | wall-coated open tubular | wall-coated open tubular | bonded phase
wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | glass
quartz glass | quartz glass | quartz glass | glass
quartz glass
stainless steel | quartz glass | quartz glass | quartz glass
stainless steel | quartz glass
stainless steel | quartz glass | stainless steel | stainless steel | quartz glass | quartz glass
stainless steel | quartz glass
stainless steel
glass | stainless steel | quartz glass
stainless steel | quartz glass | -
quartz glass | quartz glass
quartz glass | quartz glass | | STATIONARY
PHASE | c)
OV-101
SE-30
SE-30 | 1,3-dimethyl-1-
SE-30 | 1,4-dimethy1-1-
SE-30 | 1-methy1
ex OV-101
SE-30
SE-30 | 1-phenyl
SE-30 | 3-bromo
Me silicone | 3-metny1-1-
SE-30
SE-30 | -methy1-1-
SE-30
SE-30 | 4-vinyl-1-
SE-30
SE-30 | SE-30 | 3-methyl
SE-30 | SE-30 | 1,5-
SE-30
SE-30 | | e, 1,3,5,7-
SE-30 | SE-30
SE-30 | L, 3-
SE-30 | 5-methy1-1,3
SE-30 | hexachloro
OV-1
Me silicone | SE-30 | | COLUMN
C ORIGIN | ~ ∺ | | | ¥. | | | | _ | | cyclohexylamine
0862 HP | cyclohexylamine,
0926 HP | _ : | ene, | ctane
HP | cyclooctatetraene, 1,3
0880 HP SE-30 | ctene | cyclopentadiene,
0540 | cyclopentadiene,
0639 | cyclopentadiene,
1318 SAC
1343 | cyclopentamine
1065 J&W Sci. | | LTP
INDEX | cyclohexene
0667 Quac
0681
0690 | cyclohexene,
0825 | cyclohexene,
0825 | cyclohexene,
0758 Quad
0772
0773 HP | cyclohexene,
1384 | cyclohexene,
0988 | cyclohexene,
0743
0745 HP | cyclohexene,
0743
0744 HP | cyclohexene,
0833
0840 | cyclohe
0862 | cyclobe
0926 | cyclome
2841 | cyclood
0926
0949 | cyclooctane
0920
0932 HP
1004 | cycloo,
0880 | cyclooctene
0900
0910 HP | cyclope
0540 | cyclope
0639 | cyclope
1318
1343 | cyclop
1065 | | ļ | LIT
REF | 37
38
38 | 37 | 37 | 37 | 37 | 40 | 40 | 37 | 37 | 37 | 37
8 | 000 | ,
10. | 37.8 | ഹനന | 80 | 37 | 37 | 37 | 37 | 80 | 38 | 46 | |---|-----------------------------|---|---------------------------|-----------------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--|----------------------------|---|--|-------------------|------------------|--|--|--------------------------|------------------------------|---------------------------------|---|---------------------------|--------------------------|---------------------------------------|---| | | SAMPLE TYPE | standard
standard
standard
standard | standard | standard | standard | standard | standard | standard | standard
standard | standard | standard | standard
standard
standard | standard | | essential oil
standard
standard | tap water
essential oil
standard | standard food | | | ID LEN CARRIER (mm) (m) GAS | 0.25 108 helium
0.27 100
0.20 50 nitrogen
2.0 2 | 0.27 100 | 0.27 100 | 0.27 100 | 0.27 100 | 0.2 50 nitrogen | 0.2 50 nitrogen | 0.25 108 helium
0.27 100 | 0.27 100 | 0.27 100 | 0.25 108 helium
0.27 100
0.20 50 nitrogen | 0.25 108 helium | | 0.30 50 helium
0.27 100
0.20 50 nitrogen | 0.30 50 helium
0.30 50 helium | 0.20 50 nitrogen | 0.27 100 | 0.27 100 | 0.27 100 | 0.27 100 | 0.20 50 nitrogen | 2.0 2 | 0.28 80 nitrogen | | | COLUMN TYPE | wall-coated open tubular
wall-coated open tubular
wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular wall-coated open tubular wall-coated open tubular | -coated open | open | bonded phase
wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
bonded phase
bonded phase | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | | | COLUMN MATERIAL | glass
soda glass
quartz glass | Boda glass | stnyı
soda glass | soda glass | soda glass | quartz glass | quartz glass | 7]
glass
soda glass | /l
soda glass | 1-trimethyl
soda glass | glass
soda glass | | glass
glass | quartz glass
soda glass
quartz glass | | quartz glass | thyl
soda glass | cnyı
soda glass | 3-trimethyl
soda glass | 4-trimetnyi
soda glass | quartz glass | 2 | -3-metnyı-z-
glass | | | STATIONARY
PHASE | OV-101
OV-101
SE-30
SE-30 | 1,1,2-trimethy1
OV-101 | 1,1,3,3-tetramethy1
OV-101 sod | 1,1,3-trimethy1
OV-101 | 1,1-dimethyl
OV-101 | bromo
Me silicone | chloro
Me silicone | cis-1,2-dimethyl
ax OV-101
OV-101 | cis-1,3-dimethyl
OV-101 | cis-1-trans-2,4-trimethyl
OV-101 soda glas | ethyl
sx OV-101
OV-101
sr-30 | رد: | SE-30
SP-2100 | OV-1
OV-101
SE-30 | ç | phenyl $SE-30$ | trans-1,2-dimethyl
OV-101 | trans-1,3-dimetnyi
OV-101 so | trans-1-cis-2,3-trimethyl
OV-101 soda glas | -1-c18-2, | vinyl
SE-30 | SE-30 | one, Z-hydroxy-3-methy1-z
OV-101 glass | | | LTP COLUMN INDEX ORIGIN | ntane
Quadre
PEC | | | | | | cyclopentane, c
0767 | cyclopentane, ci
0715 Quadrex
0722 PEC | entane,
PEC | cyclopentane, c
0773 PEC | cyclopentane, et
0725 Quadrex
0733 PEC | antane,
Quadro | | | • | | | | | | | cyclopentanol
0792 | cyclopenten-1-one,
1021 Ö | | LIT
REF | 8 8
8 | 60 | 80 | 80 | 53
28 | 8 7 | 8 73 | 8 | 28
43 | 40 | 4.0 | 44
1
40 | 40 | 2 | 81 | 8 | 19 | 28
19 | ппп | 11 | ∞ α | æ | |---------------------|--|-------------------------------|--------------------------|--------------------------|---|---|---|--------------------------|--|--------------------------|--------------------------|--|--------------------------|---|--------------------------|--------------------------|----------------------|----------------------------------|--|--------------------------|---|--------------------------| | SAMPLE TYPE | standard
standard | standard | standard | standard | n)
etandard
standard | standard
standard | standard
standard | standard | standard
tap water | standard | standard | tap water
standard
standard | standard | standard
standard | standard | standard | standard | standard
standard | standard
essential oil
tap water | standard |
standard
standard | standard | | LEN CARRIER (m) GAS | 50 nitrogen
2 | 50 nitrogen | 50 nitrogen |) nitrogen | | 108
50 | 108
50 | 50 nitrogen | 50 hydrogen
50 helium | 50 nitrogen | 50 nitrogen | 25 helium
4 helium
50 nitrogen | 50 nitrogen | 108 helium | 108 helium | 108 helium | | 50 hydrogen | 50 helium
50 helium | 25 nitrogen | 50 nitrogen
108 helium | 50 nitrogen | | OI
(mm) | 0.20 | 0.20 | 0.20 | 0.20 | 171 es
5
0.32 | 0.25 | 0.25 | 0.20 | 0.32 | 0.2 | 0.2 | 3.00 | 0.2 | 0.25 | 0.25 | 0.25 | | 0.32 | 0.30 | 0:30 | 0.20 | 0.20 | | | r
(100-120 mesh) | | | weenhoner 1 moth | (3-phenoxypheny1)mechyl ester
orb W HP (80-100mesh) 5 2
0.32 50 | | | | | | | (80-100mesh) | | | | | | | | | | | | COLUMN TYPE | wall-coated open tubular
15% w/w on Gas-Chrom Q (10 | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | D) | wall-coated open tubular wall-coated open tubular | wall-coated open tubular wall-coated open tubular | wall-coated open tubular | bonded phase | wall-coated open tubular | wall-coated open tubular | 3% w/w on Chromosorb W HP wall-coated open tubular | wall-coated open tubular | wall-coated open tubular wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | 25%w/w on Celite | bonded phase
25%w/w on Celite | bonded phase
bonded phase
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | quartz glass | quartz glass | quartz glass | quartz glass | o- (2, 2-archiotoviny)
quartz glass
quartz glass | glass
quartz glass | | ď | crans-y- (geosmin)
quartz glass
quartz glass | quartz glass | quartz glass | glass
quartz glass | | glass
stainless steel | glass | glass | | quartz glass | quartz glass
quartz glass
glass | quartz glass | quartz glass
glass | quartz glass | | STATIONARY
PHASE | SE-30
SE-30 | 1, Z -dimetnyl - 1 -
SE-30 | | ;
;
; | acıu, | ov-101
sE-30 | OV-101
SE-30 | SE-30 | trans-1,10-qimetnyi-trans-9
AC OV-1 quartz
OV-101 quartz | romo
Me silicone | hloro
Me silicone | Me silicone
OV-1
Me silicone | Me silicone | Lny1
OV-101
SE-30 | ov-101 | OV-101 | ecnyi eacer
SE-30 | OV-1 | OV-1
OV-1
SP-2100 | SE-30 | SE-30
OV-101 | SE-30 | | COLUMN | | | | 9 | cyclopropanecarboxyllc
2634 PEC SE-30
2657 SAC OV-1 | P-
Quadrex | O | | ້ວ: _ເ | | | - ¤ | | | | 1-merny
Juadrey | acto, | SAC SAC | Hall
Hall
Supelco | 03 - | 4 01+ | | | LTP
INDEX | cyclopentene
0558
0565 | cyclopentene,
0764 | cyclopentene
0654 | cyclopentene,
0615 | cyclopi
2634
2657 | cymene,
1009
1013 | decalin,
1084
1087 | decalin,
1049 | 1384
1385 | decane,
1735 | decane,
1546 | decane,
1251
1326
1344 | decane,
1258 | decane,
1119
1119 | decane,
1065 | decane,
1061 | 1379 | 1308
1310
1310 | 1187
1187
1187
1188 | 1257 | 0988 | 0660 | | LIT
REF | æ | ∞ | 49 | 23 | 25 | 23 | 23 | 47 | ĸ | e e. | 28 | 4.5 | 7 | 23 | 41 | ĸ | 5.44
5.6 | 4 | | 90 | 44 | 56 | 12 | • | 7.7 | 10 | 12 | 12 | 12 | 10 | |----------------------------|--------------------------|--------------------------|--------------|------------------------------|-------------------------------------|--------------------------------|-----------------------------------|------------------------|-----------------------|------------------------|------------------------------|--------------|--------------|--|--|---------------------------|----------------------------|-----------|---------------|--------------|-------------|-----------------------------|---------------------------------|-------------------------|--|--------------------------|--------------------------|---|---|--| | SAMPLE TYPE | standard | essential oil | standard | standard | grandard | standard | standard | essential oil | tap water
standard | tap water | | standard | tap water | standard | standard | | standard | standard | standard | standard | standard | standard | | LEN CARRIER
(m) GAS | 50 nitrogen | 50 nitrogen | 15 helium | 15 helium | 3.0 | 15 helium | 15 helium | 25 helium | | 50 helium
15 helium | | of helium | | 15 helium | 15 helium | | 25 helium
12 | 25 helium | | 77 | 25 helium | 12 | 25 nitrogen | | cs nitrogen | 25 nitrogen | | ID (mm) | 0.20 | 0.20 | 0.25 | 0.25 | 3.00 | 0.25 | 0.25 | 0.20 | 0.30 | 0.30 | 0.32 | Ċ | 0.40 | 0.25 | 0.32 | 0.30 | 0.20 | | 0 | 0.20 | | 0.20 | 0.30 | ć | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | bonded phase | wall-coated open tubular | 1% w/w on Gas-Chrom Q (100-120mesh) | wall-coated open tubular | wall-coated open tubular | | bonded phase | bonded phase | bonded phase | • | | wall-coated open tubular | wall-coated open tubular | bonded phase | bonded phase | • | | bonded phase | | bonded phase | wall-coated open tubular | | Wall-coated open tubular | | COLUMN MATERIAL | quartz glass | quartz glass | quartz glass | quartz glass | glass | quartz glass | quartz glass | quartz glass | quartz glass | | quartz glass
quartz glass | | quartz glass | quartz glass | quartz glass | quartz glass | | | | quartz glass | | quartz glass | hylpropyl ester
quartz glass | hylpropyl ester | quartz glass
3-butenvi ester | quartz glass | duartz glass | ropyl ester
quartz glass | ropyl ester
quartz glass | l ester
quartz glass | | STATIONARY
PHASE | SE-30 | SE-30 | DB-1 | SE-30 | ov-1 | SE-30 | SE-30 | Me silicone | ov-1 | 0V-1 | SE-30
OV-1 | OV-1/SE-30 | Me silicone | ethyl
SE-30 | oxazepine
DB-1 | ov-1 | Me silicone
Me silicone | 2-chloro | 3-nitro | Me silicone | Me silicone | Me silicone | id, 1,1-dimet
SE-30 | acid, 1,2-dimethylpropy | SE-30 quartz
acid 1-methvl-3-butenv | SE-30 quartz | 14, 1-mecnyı
SE-30 | acid, 1-methylpropyl es
SE-30 quartz | acid, 2-methylpropyl es
SE-30 quartz | acıd, Z~propenyl ester
SE-30 quartz | | LTP COLUMN
INDEX ORIGIN | | decene, trans-5-
1000 | 1f
2126 | desipramine
2200 J&W Sci. | desmosterol
3125 | dextromethorphan 2097 J&W Sci. | diacetylmorphine
2581 J&W Sci. | diamorphine
2639 HP | diazepam
2376 Hall | | 2383 J&W SCI. | | 2461 HP | diazepam, n-desmethyl
2428 Jaw Sci. SE-30 | dibenz(b,t)(1,4)oxazepine
1726 Jaw SCI DB-1 | dibenzofuran
1459 Hall | | ofuran, | nr
ofuran, | | 1790 HP | dibenzothlopnene
1713 HP | ric
R | acetic | 1244 SGE | | | | | dibromoacetic ac
1114 SGE | | H | dec
0 | dec
1 | def
2] | des
2 | des
3 | dex
2 | dia
2 | die
2 | die | · 67 (| .40 | 4 (7) | (N | die | dik
1 | dib
1 | | dik | dib | 1,1 | 11 | 119 | dib | dik | 1.
1. | ; ; | 110 | dil
1 | 4. | di.
L | | LIT | 10 | 10 | 12 | 10 | 10 | 12 | 12 | 10 | 5 | ოო | 12 | 12 | 10 | 12 | | 71 | 12 | 10 | 10 | 10 | 12 | 10 | 10 | 12 | 12 | 10 | - | 48 | |--|--------------------------|---------------------------------------|--------------------------|---|--------------------------|--|---|--------------------------|----------------------------------|--|---|--|---|-------------------------------------|--------------------------------|---------------------------|-----------------------------|--------------------------|---|--------------------------|--------------------------|----------------------------|--------------------------|---|--------------------------|---|---------------------------|--| | R SAMPLE TYPE | en standard | en standard | pen standard | Jen standard | jen standard | Jen standard | pen standard | Jen standard | tap water | n essential oil
n standard | yen standard | en standard | en standard | en standard | | | yen standard | en standard | en standard | en standard | pen standard | pen standard | yen standard | yen standard | Jen standard | en standard | n standard | en standard
en standard | | LEN CARRIER
(m) GAS | 25 nitrogen | 50 helium
50 helium | 25 nitrogen | 25 nitrogen | 25 nitrogen | 25 nitroden | u | | 25 nitrogen 4 helium | 25 hydrogen
25 hydrogen | | I QI
(mm) | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | | 0.00 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | (80-100mesh) 3.00 | 0.22 | | COLUMN TYPE | wall-coated open tubular bonded phase
bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | 1 | oben | wall-coated open tubular 3% w/w on Chromosorb W HP | <pre>wall-coated open tubular wall-coated open tubular</pre> | | LIP COLUMN STATIONARY INDEX ORIGIN PHASE COLUMN MATERIAL | acid, 2-propynyl | acid, 3-butenyl ester
SE-30 quartz | 3-methylbut | dibromoacetic acid, 4-pentenyl ester
1318 SGE SE-30 quartz glass | acid,
SE | dibromoacetic acid, dimethylethyl ester
1103 SGE
SE-30 quartz glass | acid, methylethyl ester
SE-30 quartz | | l etner
Supelco SP-2100 glass | 0873 Hall OV-1 quartz glass
0873 Hall OV-1 quartz glass | ic acid, 1,1-dimethylprop
SE-30 quartz | dichloroacetic acid, 1,2-dimethylpropyl ester 1084 SGE SE-30 | dichloroacetic acid, 1-methyl-3-butenyl ester 1077 SGE SE-30 quartz glass | tic acid, 1-methylbutyl es
SE-30 | cocctic acid, 1-methylpropyl e | quartz
-methylpropyl e | 1030 SGE SE-30 quartz glass | SE-3 | dichloroacetic acid, Z-propynyl ester 0962 SGE SE-30 quartz glass | SE-3 | acid,
SE-3 | 4-pentenyi esi
30 quart | | dichloroacetic acid, dimethylethyl ester
0960 SGE SE-30 quartz glass
dichloroacetic acid, methylethyl ester | quartz | dichiologuetic acid, trams 3-mexemy, ester
Sich SGE SE-30 quartz glass | | 311 5CB | いというのうないのでは、 | 0.22 25 hydrogen standard | |---| | wall-coated open tubular | | 5CB quartz glass 5CB quartz glass 5CB quartz glass 6cr, 2,4- 5CB quartz glass | | CHROWEAK CP 511 | | S11 5CB chartz diasa wall-coated open tubulat | | LIT | 4 4 4 4
8 8 8 8 | 28 | | 23 | 23 | 38 | nun | 23 | 23 | | 25 | ოო | ო | m | |----------------------------|---|---|---|--|------------------------------|----------------|---------------------------------|--------------------------|-------------------------------|--|---|--|------------------------------|--|------------------------------|-----------------------|-----------------| | SAMPLE TYPE | n standard
n standard
n standard
n standard | standard
standard
standard | o standard
o standard
o standard
o standard | n standard
n standard
n standard
n standard | n standard
standard | standard | Btandard
Btandard | standard | | essentiai oli
tap water
standard | standard
standard | standard
standard | standard | standard | standard
essential oil | standard | essential oil | | N CARRIER GAS | 5 hydrogen
5 hydrogen
5 hydrogen
5 hydrogen | 5 hydrogen
5 hydrogen
5 hydrogen
5 hydrogen | 5 hydrogen
5 hydrogen
5 hydrogen
5 hydrogen | 5. hydrogen
5. hydrogen
5. hydrogen
5. hydrogen | 50 hydrogen
15 helium | C1 14 | 5 helium | 5 helium | 2 | o helium | 5 helium
5 helium | 5 helium
5 helium | 0 | 0. | 50 helium
50 helium | 50 helium | 50 helium | | ID LEN | 0.22
0.22
0.22
0.22
2 | 0.22 2
0.22 2
0.22 2
0.22 2 | 0.22 2 | 0.22 2 2 0 0.22 2 0 0.22 2 2 2 2 2 2 2 2 | 2 2 | 0 0 | ່າ ເດ | 0.25 1 | | 0.30 5 | 0.25 1 | 0.25 1 | m | .00 3. | 0.30 5 | 0.30 5 | 0.30 5 | | COLUMN TYPE | wall-coated open tubular 0.2 wall-coated open tubular 0.2 wall-coated open tubular 0.2 wall-coated open tubular 0.2 | wall-coated open tubular 0. wall-coated open tubular 0. wall-coated open tubular 0. wall-coated open tubular 0. | wall-coated open tubular 0. wall-coated open tubular 0. wall-coated open tubular 0. wall-coated open tubular 0. | wall-coated open tubular 0. wall-coated open tubular 0. wall-coated open tubular 0. wall-coated open tubular 0. | bonded phase 0.3 | נים | | wall-coated open tubular | on Gas-Chrom Q (100-120 mesh) | bonded phase wall-coated open tubular bonded phase | wall-coated open tubular 0.2 | wall-coated open tubular 0.
-3,5- (oryzalin)
bonded phase | on Gas-Chrom Q (100-120mesh) | 1% w/w on Gas-Chrom Q (100-120mesh) 3. | bonded phase 0. | bonded phase 0. | bonded phase 0. | | COLUMN MATERIAL | 2,4-
quartz glass
quartz glass
quartz glass | er, 2,4-
quartz glass
quartz glass
quartz glass | , 2,4- quartz glass quartz glass quartz glass quartz glass | 2,4-
quartz glass
quartz glass
quartz glass | quartz glass
quartz glass | 7 | quartz glass
quartz glass | quartz glass | ; | quartz grass
glass
quartz glass | quartz glass
quartz glass | glass
gylamino)
glass | | glass | quartz glass
quartz glass | quartz glass
2,4~ | quartz glass | | MN STATIONARY | AK CP | >- | 1 tridecyl ether, PAK CP Sil 5CB PAK CP Sil 5CB PAK CP Sil 5CB PAK CP Sil 5CB | benzyl undecyl ether,
CHROMPAK CP Sil 5CB
CHROMPAK CP Sil 5CB
CHROMPAK CP Sil 5CB
CHROMPAK CP Sil 5CB | OV-1
Sci. SE-30 | | ci. SE-30
mine
ci. SE-30 | ine
Sci. SE-30 | ether, 2,2'-dichloro | 0 | ci. SE-30
ci. SE-30 | E-30
honamide,
B-1 | 00-1 | OV-1 | 0V-1
0V-1 | OV-1
propyl ether, | , ov-1 | | LTP COLUMN
INDEX ORIGIN | dichlorobenzyl pi
1464 CHROMPAK
1464 CHROMPAK
1465 CHROMPAK
1467 CHROMPAK | dichlorobenzyl tetr
2588 CHROMPAK CP
2594 CHROMPAK CP
2600 CHROMPAK CP
2600 CHROMPAK CP | dichlorobenzyl tridecyl
2483 CHROMPAK CP Sill
2490 CHROMPAK CP Sill
2495 CHROMPAK CP Sill
2495 CHROMPAK CP Sill | dichlorobenzyl undecyl
2275 CHROMPAK CP Si
2280 CHROMPAK CP Si
2284 CHROMPAK CP Si
2287 CHROMPAK CP Si | dicyclomine
2080 J&W S | - " | diethyltryptamine 1875 J&W Sci. | | copy. | 1029 Hall
1029 Supelco
1029 Hall | dimehydrinate
1841 J&W Sci
dimethindine
2250 J&W Sci | dimethyltryptamine
1720 J&W Sci. Sl
dinitrobenzenesulpl
2619 Dl | diosgenin
3255 | dioxyemone
3360
dioxane 1.3- | EE EE | | 0687 Hall | | LIT
REF | 38
38 | 38 | വനന | ۵ | 23 | 23 | ოსო | 1 | 4 | 56 | 23 | - | 49 | 23 | 41 | നന | | იო | 32 | 9 6 | 32 | 8
7
8
7
8 | 32 | 49 | 41 | | |-----------------------------|--|---------------------------------------|--|--------------------------|---|------------------------------|--|--|-------------------------------|---------------------------|---|--|------------------------------|--------------------------|--------------------------------|-------------------------|-------------|------------------------------|----------|--|--------------------------|------------------------------|--------------------------|-----------------|-------------------------------|-----| | SAMPLE TYPE | standard
standard | standard | essential oil
standard
tap water | standard | standard
standard | standard | essential oil
tap water
standard | standard | standard | standard | standard | standard | standard
standard | standard | standard | standard | | standard | standard | standard | standard | standard
standard | standard | standard | standard | | | LEN CARRIER (m) GAS | 50 hydrogen
2 | 7 | 50 helium
50 helium | 50 nitrogen | 15 helium
25 helium | 15 helium | 50 helium
50 helium | 4 helium | | 12 | 15 helium | 4 | 15 helium
25 helium | 15 helium | 15 helium | 50 helium
50 helium | | 50 helium | 100 | - | 100 | | 100 helium | 15 helium | 15 helium | | | OI (mm) | 0.32 | 2.0 | 0.30 | 0.20 | 0.25 | 0.25 | 0.30 | 3.00 | | 0.20 | 0.25 | 3.00 | 0.25 | 0.25 | 0.32 | 0.3 | | | 0.5 | 2.4 | 0.5 | 0.32 | 0.5 | 0.25 | 0.32 | | | COLUMN TYPE | bonded phase 15% w/w on Gas-Chrom Q (100-120 mesh) | 15% w/w on Gas-Chrom Q (100-120 mesh) | bonded phase
bonded phase
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase
wall-coated open tubular
bonded phase | lifon)
3% w/w on Chromosorb W HP (80-100mesh) | | bonded phase | wall-coated open tubular | | bonded phase | wall-coated open tubular | wall-coated open tubular | bonded phase | | bonded phase
bonded phase | oben | Wail-Coaced open tuburar
Chromosorb W DCMS (100-120 mesh) | wall-coated open tubular | bonded phase
bonded phase | wall-coated open tubular | bonded phase | wall-coated open tubular | 1 1 | | COLUMN MATERIAL | quartz glass | | quartz glass
quartz glass
glass | quartz glass | quartz glass
quartz glass | quartz glass | ત ત | rachlo
lass | glass | quartz glass | quartz glass | O,O,O',O'-tetraethyl
glass | quartz glass
quartz glass | quartz | quartz glass | quartz glass |)
1
7 | quartz glass
martz glass | • | glass
glass | - | quartz glass
quartz glass | glass | quartz glass | quartz glass | | | UMN STATIONARY
GIN PHASE | - (cont)
OV-1
SE-30 | 1,3-
SE-30 | -ethyl-4-methyl $0V-1 \\ 0V-1 \\ 0V-1 \\ 1CO SP-2100$ | SE-30 | | ine metabolite
Sci. SE-30 | er
Ico SE
OV | phone, 2,4,4',5-tetrachloro
OV-1 | 2-amino-5-chlos
OV-1/SE-30 | e, Z-nitro
Me silicone | | diphosphorodithioic acid, 0,0,
2220 | DB-1
Me silicone | Sci. SE-30 | bis(2-chloroethyl)
SCI DB-1 | diethyi
OV-1 | dimethyl | 0V-1
0V-1 | SE-30 | OV-101
SE-30 |
ethylmethyl
SE-30 | 0V~1
0V~1 | propylmethyl
SE-30 | sulfone
DB-1 | 4-
 SCI DB-1 | | | LTP COLUMN
INDEX ORIGIN | | | _# # # # | dipentene
1019 | diphenhydramine
1842 J&W Sci.
1888 HP | | diphenyl ether
1363 Hall
1376 Supelco
1376 Hall | diphenyl sulphone,
2430 | diphenylamine,
2078 | diphenylamine,
1965 HP | diphenylpyralamine
2073 Jaw Sci. SE-30 | diphosphorod
2220 | 2232
2265 HP | · · | | disulphide,
0903 SAC | hide, | 0718 SAC | | 0736
0743 | 2 | 0869 SAC
0869 SAC | e, | | dithane, 1,4-
1019 J&W SCI | | | LIT
REF | 49 | 44 | സസ | 40 | 40 | 15 | ო ო | 19 | 28 | 555 | 11 | 81 | 23 | 23 | ω | 23
19 | 44 | 40 | 40 | 23 | 38 | ттт | 25 | |---------------------|--|---------------------|--|--------------------------|--------------------------|--------------------------|--|----------------------|------------------------------|---|---------------------------|------------------------------|--------------------------|-----------------------------|--------------------------|--|-------------|---------------------------|------------------------------|----------------------------|---------------------------------------|---|-------------------------------------| | SAMPLE TYPE | standard | tap water | essential oil
standard
tap water | standard | standard | standard | standard
essential oil | standard standard
standard | tap water | standard | standard | standard | standard | essential oil
standard
standard | standard | | LEN CARRIER (m) GAS | 15 helium | 25 helium | 50 helium
50 helium | 50 nitrogen | 50 nitrogen | | 50 helium
50 helium | | 50 hydrogen | 25 hydrogen
25 hydrogen | 25 nitrogen | 108 helium | 15 helium | 15 helium | 50 nitrogen | 15 helium | 25 helium | 50 nitrogen | 50 nitrogen | 15 helium | 7 | 50 helium
50 helium
50 helium | 3.0 | | ID (mm) | 0.25 | | 0.30 | 0.2 | 0.2 | | 0.30 | | 0.32 | $0.31 \\ 0.31$ | 0.30 | 0.25 | 0.25 | 0.25 | 0.20 | 0.25 | | 0.2 | 0.2 | 0.25 | 2.0 | 0.30
0.30
0.30 | 3.00 | | COLUMN TYPE | diyl) (morestan)
bonded phase | | bonded phase
bonded phase
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase
bonded phase | 25%w/w on Celite | popuo | 23%W/W on Cellice
bonded phase
bonded phase | wall-coated open tubular | wall-coated open tubular
25%w/w on Celite | | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) | bonded phase
bonded phase
bonded phase | 1% w/w on Gas-Chrom Q (100-120mesh) | | COLUMN MATERIAL | s,s-(6-methylquinoxaline-2,3-diyl) DB-1 quartz glass bor | | quartz glass
quartz glass
glass | guartz glass | | -
stainle | quartz glass
quartz glass | | quartz glass | glass
glass | quartz glass | glass | quartz glass | quartz glass | quartz glass | quartz glass | | quartz glass | quartz glass | quartz glass | | quartz glass
quartz glass
quartz glass | glass | | STATIONARY
PHASE | s, s-(6-methyl
DB-1 | Me silicone | OV-1
OV-1
SP-2100 | licone | o
Me silicone | trimethy
SE-30 | (lauric acid) OV-1 | ethyl ester
SE-30 | | SE-30
OV1-1/SE-54
OV1-1/SE-54 | SE-30 | OV-101 | SE-30 | SE-30 | SE-30 | sE-30
SE-30 | Me silicone | no
Me silicone | oro
Me silicone | SE-30 | SE-30 | ov-1
ov-1
ov-1 | -3-one
0V-1 | | | dithiocarbonate, | docosane
2200 HP | dodecanal
1389 Hall
1389 Hall | ě | dodecane, 1-bromo | ne, | dodecanoic acid,
1732 Hall
1742 Hall | ĕ | dodecanoic acid,
1507 SAC | 1513
1526 HP
1526 HP | dodecanol, 1-
1460 SGE | dodecene, 1-
1189 Quadrex | doxepin
2194 J&W Sci. | doxylamine
1888 J&W Sci. | durene
1100 | ecgonine, methyl
1439 J&W Sci.
1462 | O. | eicosane, 1-bromo
2395 | eicosane, 1-chloro
2292 M | ephedrine
1336 Jaw Sci. | epichlorhydrin
0700 | epoxide, propylene
0636 Hall
0636 Hall O'
0664 Hall O' | ergost-8(14)-en-3-one
3230 OV-1 | | LIT | 25 | 25 | 25 | 46 | 38 | 41 | 40 | r | 'nm | ស | 40
88 | Ì | 40 | 97 | <u>,</u> – | ო | m | 28 | ec
C | - | 4 | ო (| m | 28 | } | ~ ; | 53
48 | 2 | 40 | 96 | 40 | က | ന് | , | 40 | 40 | 40 | 1 | 40 | |---------------------|----------------------|--------------------|---------------------|-----------------|-----------------|---|------------------------------------|-----------------------|------------------------------|-------------|----------------------------|-------------------------------|--------------|---------------------------------|-----------------------|--------------|---------------|-----------------------|--|--------------------|------------|----------|--|--------------|--------------|--------------|---|----------|--------------|--|--------------|---------------|-----------------------|----------------|--------------|--------------|---|-------------|--------------| | SAMPLE TYPE | standard | standard | standard | food | standard | standard | standard | 7
2
2
2
2 | standard
essential oil | tap water | standard | | standard | 7
2
0
1 | standard | standard | essential oil | standard | gtandard | standard | standard | | essential oil | standard | | standard | standard | | standard | ה היים לה מים מי
מים לה מים ל | standard | essential oil | standard
tan water | 10000 | standard | standard | standard | | standard | | LEN CARRIER (m) GAS | 3.0 | 3.0 | 3.0 | 80 nitrogen | 2 | 15 helium | 50 nitrogen | 50 50 | | | 50 nitrogen
2 | | 50 nitrogen | 25 hudrogen | 7 4 | 20 | | 50 hydrogen | z nitrogen | 4 helium | | | uniled oc | 50 hydrogen | | 4 helium | z nitrogen
25 hydrogen | | 50 nitrogen | 50 hydrogen | | | oo hellum | | 50 nitrogen | 50 nitrogen | 50 nitrogen | :
: | 50 nitrogen | | OI (IIII) | 3.00 | 3.00 | 3.00 | 0.28 | 2.0 | 0.32 | 0.2 | 6 | | | 2.0 | | 0.5 | 000 | 3.00 | 0.30 | 0.30 | 0.32 | n | 3.00 | | 0.30 | 0.30 | 0.32 | | 3.00 | 0.22 | !
! | 0.2 | 0.32 | 0.2 | 0.30 | 0.30 | | 0.5 | 0.2 | 0.2 | | 0.2 | | | (100-120mesh) | (100-120mesh) | (100-120mesh) | | (100-120 mesh) | | | | | | r
(100-120 mesh) | | | | (80-100mesh) | | | / 40 0 m 0 0 m 0 of 1 | (usemont-ns) | (80-100mesh) | • | | | | | (80-100mesh) | (vgemont-ne) | | | | | | | | | | | | | | COLUMN TYPE | Gas-Chrom Q (100 | Gas-Chrom Q (100 | Gas-Chrom Q (100 | open tubula | Gas-Chrom Q (10 | open tubular | open tubular | | D OD | oben | open tubula
3as-Chrom O | 1 | open tubular | and tubular | romosorp W | ø | ø | 3 | MOSOLD | on Chromosorb W HP | | o | Φ | ø |) (o,p'-DDT) | H | 3% W/W on Chromosorb W MP
Wall-coated open tubular | | open tubular | Œ | open tubular | Ð | e
open tubular | • | open tubular | open tubular | open tubular | | open tubular | | | 18 w/w on G | 18 w/w on G | 18 w/w on G | | 15% w/w on | wall-coated | wall-coated | 1000 de 1000 | | wall-coated | wall-coated | | wall-coated | (p, p' - DUI) | 3% w/w on C | bonded phase | | bonded phase | 3% W/W | 38 W/W | | | bonded pnase | bonded phase | | 38 w/w on C | wall-coated | | wall-coated | bonded phase | wall-coated | bonded phase | bonded phase | | wall-coated | wall-coated | wall-coated | , | wall-coated | | COLUMN MATERIAL | glass | glass | glass | glass | | oroethyl)thio)}
quartz glass | quartz glass | , [| quartz glass
quartz qlass | 1 | quartz glass | -trifluoro | quartz glass | 13 (4-chlorophenyl) | quartz yrass
qlass | quartz qlass | quartz glass | quartz glass | quartz glass
2-bis(4-methoxyphenyl) | qlass | | 9 | Hall
1.1 1-trichloro-2.2-bis(chloropheny)) (D | | henyl)-2 | | quartz glass
quartz glass | i i | quartz glass | quartz qlass | 9.19 | glas | quartz glass
glass | | quartz glass | quartz glass | -triiituoro
quartz glass | , , | quartz glass | | STATIONARY
PHASE | -en-3beta-ol
OV-1 | ov-1 | OV-1 | OV-101 | SE-30 | 1,1'-oxybis[2-((2-chloroethyl)t
J&W SCI DB-1 quartz gl | 1,1,1,2-tetrachloro
Me silicone | 1-trichloro | 0V-1 | SP-2100 | Me silicone | 1-trichloro-2, 2, 2-trifluoro | Me silicone | 1,1,1-trichloro-2,2-bis(4-chlor | OV-1 | OV-1 | | | SE-30
-trichloro-2.2-b | ov-1 | OV-1/SE-30 | 0V-1 | 0V-1
-ichloro-2,2-b | OV-1 | ro-2-(2 | | SE-30
CCP Sil 5CB | - | Me silicone | 1,1,2,2-tetrachiore
SAC OV-1 | Me silicone | ov-1 | OV-1
SP-2100 | ribromo | Me silicone | Me silicone | Z-trichloro-1,2,2-trifiluoro
Me silicone quartz gl | | Me silicone | | COLUMN | 4) | nol | none | | | 1,1'-0xy
J&W SCI | 1,1,1,2- | | Hail
Hall | Supelco | | 1,1,1-tr | , | 1,1,1-tr | Chrome | Hall | Hall | SAC | PEC 1-1-1- | 4 | | Hall | Hall | SAC | | Ç | CHROMPAK | 1,1,2,2- | | SAC | }
i | Hall | Hall
Supelco | 1,1,2-tribromo | 1 | 1,1,4,1,1 | 1,1,2-tr | 1,1-dibromo | | | LTP | ergost-8(14)
3215 | ergostanol
3210 | ergostanone
3240 | ethanal
0363 | 6960 | ethane,
1910 | ethane, | ethane, | 0630 | 0632 | 0635 | ethane, | 0528 | ethane, | 2290 | 2293 | 2300 | 2300 | 2330 | 2410 | 2417 | 2420 | 2420 | 2232 | ethane, | 2220 | 2242 | ethane, | 1269 | ethane, | 0886 | 0888 | 0888 | ethane, | 1013 | 0751 | ethane,
0529 | ethane, | 0724 | | LIT |

 | nen | - | | 0 | 5 8 2 | -
 - 4 | 28 | 41 | 90 | 55 | 52 | 40 | c | 40 | დ i | ນ ດ
ນາ ດ | 1 | 40 | 40 | • | m u | റെത | 40 | a | • | 48 | 7.8 | 040 | 3 | 40 | & a | ,
, | ന | 40 | |---------------------------|---|---------------|--|---|--|------------------|----------------------------------|-------------------------------------|------------------|------------------------------|-------------------|-------------|--|--------------------------|--|-----------------------|-------------------------------|------------------------------|------------------------------|--------------------------|--------------------------|------------------|---------------|-----------------------|---------------------|--|-----------------------------------|---------------------|-----------------|--------------------------|---------|--------------------------|--|--------------|---------------|-----------------------------| | SAMPLE TYPE | standard
standard | essential oil | standard | standard | atandard | standard | 7 | standard | standard | standard | atandard | standard | standard | standard | - t | standard | standard | standard
standard | • | standard | standard | | essential oil | cap water
standard | standard | at and and | | standard | standard | standard | | standard | standard | | essential oil | standard
standard | | _ | 4 helium | | 4 helium | 4 helium | 15 helium | 50 hydrogen | 4 boliss | | 50 hydrogen | 15 helium | 50 nitroden | | 25 hydrogen | 50 nitrogen | 100 belium | | | 25 hydrogen
25 hydrogen | | 50 nitrogen | 50 nitrogen | | 50 helium | 50 helium | | 25 hudrogen | | 25 hydrogen | on nydrogen | 50 nitrogen | 1 (| 50 nitrogen | 50 nitrogen
50 hydrogen | | 50 helium | | | | 3.00 | 0:30 | 3.00 | 3.00 | 200 | 0.32 | 6 | 3.00 | 0.32 | 0.32 | 6 | 0.31 | 0.31 | 0.2 | | 7 7 7 | 2.0 | 0.31 | | 0.2 | 0.2 | 6 | 0.30 | 0.30 | 0.2 | 0.22 | | 0.22 | 0.32 | 0.2 | | . z | 0.20 | ; | 0.30 | 0.2 | | COLUMN TYPE | (p,p'-TDE) 3% w/w on Chromosorb W HP (80-100mesh) | ed phase | 'w on Chromosorb W HP (80-100mesh) | (pertnane) 3% w/w on Chromosorb W HP (80-100mesh) | tonded these | 288 | (o,p'-TDE) | W/W on chicomosold war (ev-loamesa) | ded phase | 1-coated open tubular | | | bonded phase | wall-coated open tubular | for the second of the second s | , | on Gas-Chrom Q (100-120 mesh) | bonded phase
bonded phase | | wall-coated open tubular | wall-coated open tubular | • | +t1 | open cubutar | coated open tubular | (4,4'DDD)
wall-coated open tubular | 2,4'DDD) | open tubular | bonded phase | wall-coated open tubular | | Wall-coated open tubular | wall-coated open tubular
bonded bhase | open tubular | bonded phase | phase
sated open tubular | | COLUMN MATERIAL | ll . | | | 4-etnyipnenyi) (p
glass | 1,1-dichloro-2,2-bischlorophenyl (TDE) | quartz glass | oropheny1) -2- (4-c | glass
qlass | quartz glass bon | g E | State of see |)
!
! | glass | quartz glass | | grass
quartz glass | • | gtass | tetrachloro | quartz glass | quartz glass | , 1 | quartz glass | grass
quartz qlass | glass | | henyl) | quartz glass | quartz grass | quartz glass | , | quartz glass | quartz glass | , | quartz glass | g | | IN STATIONARY
:N PHASE | 1,1-dichloro-2,2-bis(4-chlorophenyl) | OV-1 | 1,1-dichloro-2,2-bis(4-ethylphenyl) 0V-1 glass | 1,1-dichloro-2,2-bis(4-ernyiphenyi)
OV-1 glass | chloro-2,2-bisc | OV-1 | 1, 1-dichloro-2-(2-chlorophenyl) | OV-1/SE-30 | SAC OV-1 quartz | .aj (z-cnioroetny
:I DB-1 | bromo Ma oilicopa | OV1-1/SE-54 | HP OV1-1/SE-54 g1: $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ | Me silicone | 1,2-dichloro | Me silicone | SE-30 | OV1-1/SE-54 | -difluoro-1,1,2,2-tetrachlor | Me silicone | lodo
Me silicone | 1-bromo-2-chloro | OV-1 | | Me silicone | 2,2-bis(4-chloropheny
CHROMPak CP Sil 5CR | - (2-chlorophenyl) -2- (4-chlorop | CHROMPAK CP Sil 5CB | T- 00 | Me silicone
SE-30 | | Me silicone
loro | SE-30
OV-1 | | 0V-1 | Me silicone | | | 1,1-di | Hall | 1,1-di | 1, 1-d1 | 1,1-di | SAC | 1, 1-di | | SAC | J.Z-DIB | 1,2-dibromo | НP | HP | TD-7'T | 1,2-di | | į | HP
HP | N | • | 1, 2 - al 1.0 do
Me | 1-brom | Hall | Superco
Hall | | 2,2-bi | 2-(2-0 | CHROMP | SAC | | chloro | hexachloro | SAC | Supelco | Hall
Hall | †
* | | LTP
INDEX | ethane,
2200 | 2212 | ethane,
2175 | ethane,
2175 | ethane, | 2213 | ethane, | 2130 | 2146 | ethane,
1623 | ethane, | 0803 | 0805 | ernane,
1016 | ethane, | 0632 | 0640 | 0641 | ethane, | 0704 | ethane,
1008 | ethane, | 0704 | 0704 | 0707 | ethane, | ethane, | 2118 | 2146
ethane, | 0518 | ethane, | 0429
ethane, | 1000 | 1057 | 1057 | 1073 | | LIT | 40 | 40 | 40 | ۳, | om | , rv | 40 | 0 |)
P | 38 | 11 | 41 | 38 | 7 |)
F | 40 | 48 | · | m | m | 9 | o | 28 | | 40 | ĸ | • |)
r | m | S | m į | 32 | 40
38 | - | - | 40 | 40 | |----------------------|--------------------------|---------------------------|--------------------------|------------------------------|--------------|--------------------------|--------------------------|---|--------------|----------------------------|--------------------------|-----------------------------|---------------------------------------|--------------------------|--------------|--------------------------|--|---------------------------|--------------|---------------|---------------------------------|---------------------------|--------------|--------|-------------------------------|--------------------------|--------------------------|-------------------|---------------|--------------------------|--------------|----------|--|------------------------|-----------------------------|--------------------------|--------------------------| | SAMPLE TYPE | standard | standard | standard | lio Leitadose | | tap water | standard | 400000000000000000000000000000000000000 | e candata | standard | standard | standard | standard | £009 | 1 | standard | שורה
מוריים
מוריים | standard | | essential oil | 7
7
7 | standard | standard | 4
1 | standard | tap water | 400000 | Scandard | essential oil | tap water | standard | standard | standard
standard | 77
77
17
17 | stalidard | standard | standard | | LEN CARRIER (m) GAS | 50 nitrogen | 50 nitrogen | 50 nitrogen | 50 helium | 0 20 | , | 50 nitrogen | 50 011 | | 8 | | 15 helium | 7 | 80 mitrogen | | 50 nitrogen | 25 hydrogen | 4 | 20 | 50 helium | 26 hudrogen | 7 | 20 | | on urreden | | 50 nitrogen | 12 A 11 C 12 A 21 | 50 helium | | 50 helium | | 50 nitrogen
2 | A Paliforn | | 50 nitrogen | 50 nitrogen | | (mm) | 0.2 | 0.2 | 0.2 | 0.30 | 0000 | | 0.2 | ۰ | 4 | 2.0 | 0.30 | 0.32 | 2.0 | 20 | | 0.2 | 0 22 | 3.00 | 0.30 | 0.30 | 000 | 3.00 | 0.32 | c | 7.7 | | , | • | 0.30 | | 0.30 | o. 0 | 2.0 | 9 | 9 | 0.2 | 0.2 | | | | | | | | | | | | (100-120 mesh) | | | 00-120 mesh) | | | | | (80-100mesh) | • | | | (80-100mesh) | | | | | | | | | | | r
(100-120 mesh) | (80~100meeb) | (meemoot_oo) | | | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | מס מילד במה הירול
מס מילד | bonded phase | wall-coated open tubular | wall-coated open tubular | ne ludich many bothon-line | open | 15% w/w on Gas-Chrom Q (10 | wall-coated open tubular | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) | teludut meno beteon-lieu | | wall-coated open tubular | (P, P' -bbb) | 3% w/w on Chromosorb W HP
| bonded phase | bonded phase | -Z-(4-chlorophenyl) (o,p'-DDE) | 3% w/w on Chromosorb W HP | bonded phase | | waii-coated open tubular | wall-coated open tubular | wall-coated onen fubular | | bonded phase | wall-coated open tubular | bonded phase | | wall-coated open tubular
15% w/w on Gas-Chrom Q (10 | The company of the St. | W W CIT CHI CHI CHI CHI CHI | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | quartz glass | -dichloro
quartz glass | quartz glass | 7 | quartz glass | رخ
1 | quartz glass | - | quatic grass | | quartz glass | quartz glass | | ָּהָלָ
בּיַרָּ | grand | 233 | enyı) | | quartz glass | | | Ĝ | quartz glass | 7 | quartz glass | glass | marte alaga | 1 | quartz glass | | quartz glass | | quartz glass | 500 | rest f | quartz glass | quartz glass | | A STATIONARY A PHASE | Me silicone | Dromo-1,2
e silicone | como
Me silicone | loro | 017-1 | | Me silicone | rac-1, 2-dibromo-1, 2-dichloro | Me allicone | SE-30 | SE-30 | niour
DB-1 | Z, Z, Z-trichloro
SE-30 | 101 | ov-ior | Me silicone | 1,1-dichloro-2,2-bis(4-chioroph
Cubowbak CD e11 5CB | OV-1 | OV-1 | ov-1 | 1,1-dichloro-2-(2-chloropheny1) | OV-1 | OV-1 | | Me silicone
bromotrichloro | SP-2100 | cis-1,2-dibromo | loro | ov-1 | | | SE-30 | Me silicone
SE-30 | senyl
OV-1 | trans-1,2-dibromo | Me silicone | Me silicone | | COLUMN | iodo | meso-1, | pentabromo
M | pentachloro | Hall | Supelco | • | rac-1, | | | SGE | Z, Z -cnloar
Jew sci DB- | | phenyl | 1.1-dichloro | ; | I, I-dic | Chrone | Hall | Hall | 1,1-dit | Carone | SAC | bromo | hromot | Supelco | cia-1,, | retrachloro | Hall | Supelco | Hall | | | tetraphenyl | trans-1 | 7
2
2 | _ C T W II 3 _ T | | LTP
INDEX | | ethane,
1076 | ethane,
1525 | | 0820 | | | | 10/3 | 0427 | | • | ethanol,
0862 | ethanol, | 1104 | | ethene, | | | | ethene, | | | | 0450 | _ | ethene, | | | | | 1610 | | ethene, | | | 0551 | | LIT
REF
=== | 40 | ഗനാ | 35
35 | 40
38 | 40 | 40 | 40 | 28 | 40 | 40 | 44 | 44 | 40 | 38 | 4 | 49 | 49 | 23 | 49 | # | г | 1
23 | 23 | 38 | 23 | ∞ | |--------------------------------|--------------------------|---|---------------------------------------|---|-------------------------|-------------------------------------|-----------------------------------|-------------------------------|-----------------------------------|------------------------------------|------------------------------|----------------------------|--------------------------------------|---------------------------------------|------------------|------------------|---------------------|-----------------------------|------------------|--|--|---|---|--|------------------------------|--------------------------| | SAMPLE TYPE | standard | tap water
essential oil | standard
standard | standard
standard | standard | standard | standard | standard | standard | standard | tap water | tap water | standard standard
standard | standard | standard | standard | standard | | LEN CARRIER (m) GAS | 50 nitrogen | | | 50 nitrogen
2 | 50 nitrogen | 50 nitrogen | 50 nitrogen | 50 hydrogen | 50 nitrogen | 50 nitrogen | 25 helium | 25 helium | 50 nitrogen | 7 | | 15 helium | 15 helium | 15 helium | 15 helium | 4 helium | 4 helium | 4 helium
15 helium | 15 helium | 7 | 15 helium | 50 nitrogen | | ID (mm) | 0.2 | 0.30 | 0 | 0.2
2.0 | 0.2 | 0.2 | 0.2 | 0.32 | 0.2 | 0.2 | | | 0.2 | 2.0 | | 0.25 | 0.25 | 0.25 | 0.25 | 3.00 | 3.00 | 3.00 | 0.25 | 2.0 | 0.25 | 0.20 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular
bonded phase | bonded phase wall-coated open tubular | wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | | wall-coated open tubular | wall-coated open tubular | bonded phase | wall-coated open tubular | wall-coated open tubular | | | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) | | bonded phase | bonded phase | wall-coated open tubular | bonded phase | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) wall-coated open tubular | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | quartz glass | glass
quartz glass | 9, | quartz glass | quartz qlass | quartz gla | quartz glass | quartz glass | quartz glass | quartz glass | | | quartz glass | | glass | quartz glass | quartz glass | quartz glass | quartz glass | glass | lamine)
glass | glass
quartz glass | quartz glass | 1 | quartz glass | quartz glass | | COLUMN STATIONARY ORIGIN PHASE | tribromo
Me silicone | trichloro
Supelco SP-2100
Hall OV-1 | OV-1 | licone | 1,2-dichloroethyl ethyl | 2,2'-dichlorodiethyl
Me silicone | 2-bromoethyl ethyl
Me silicone | 4-bromophenyl phenyl SAC OV-1 | chloromethyl ethyl
Me silicone | chloromethyl methyl
Me silicone | di-n-hexyl
HP Me silicone | dibenzyl
HP Me silicone | dichloromethyl methyl
Me silicone | ether, methyl-t-butyl
0562 SE-30 | /SE-30 | dioxin
DB-1 | nonoxon
DB-1 | tazine
J&W Sci. SE-30 | 0 | 1-phenyl
OV-1 | | ine, 2-phenyl
OV-1
J&W Sci. SE-30 | ethylbenzoylecgonine
2219 J&W Sci. SE-30 | ethylene, trans-1,2-di-t-butyl
0793 SE-30 | rphine
Jaw Sci. SE-30 | phenyl
SE-30 | | LTP
INDEX | | ethene,
0673
0677 | | 6890 | | | ether, 2
0798 | ether, 4 | ether, c
0632 | ether, c
0544 | ether, d
1287 | | ether, d
0657 | ether, n
0562 | ethinylo
2719 | ethion d
2077 | ethion monoxon 2142 | ethoheptazine
1823 J&W S | ethyl gu
2424 | ethylamine,
1050 | ethylamine,
0780 | ethylamine,
1125
1133 J&W | ethylber
2219 | ethylene
0793 | ethylmorphine
2364 J&W Sc | ethyne,
0862 | | LIT
REF | 1 | നവന | 47
53 | 23 | 8534 4
8634 44 | ოდ | 44
56
1
30 | 44 | 30
56 | 56 | 56
1
44 | 23
47 | 23 | 23 | 18 | 19 | 19 | 38 | 25 | 25 | |-------------------------|--|--|--|--------------------------|---|--|--|----------------------------------|--|---------------------------|--|--|--------------------------|--------------------------|---------------------------------|----------------------|--|---|----------------------------------|-------------------------------------| | SAMPLE TYPE | standard | standard
tap water
essential oil | standard
standard | standard | essential oil
standard
tap water
tap water | essential oil
standard | tap water
standard
standard
standard | tap water | standard
standard | standard | standard
standard
tap water | standard
standard | standard | LEN CARRIER (m) GAS | 4 helium | 50 helium
50 helium | 25 helium
2 nitrogen | 15 helium | 50 helium
12
25 helium
25 helium | | 25 helium
12
4 helium
25 nitrogen | 25 helium | 25 nitrogen
12 | 12 | 12
4 helium
25 helium | 15 helium
25 helium | 15 helium | 15 helium | 9. | | | 2 | 0.1 | 3.0 | | I QI (um) | 3.00 | 0.30 | 0.20 | 0.25 | 0.30 | 0.30 | 0.20
3.00
0.33 | | 0.33 | 0.20 | 3.00 | 0.25 | 0.25 | 0.25 | m | | | 2.0 | 3.00 3 | 3.00 3 | | COLUMN TYPE | 3% w/w on Chromosorb W HP (80-100mesh) | phase
oated open tubular
phase | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | phase
phase | bonded phase
wall-coated open tubular | bonded phase
3% w/w on Chromosorb W HP (80-100mesh) 3
wall-coated open tubular | | wall-coated open tubular
bonded phase | bonded phase | phase
on Chromosorb W HP (80-100mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | /w on Celite 560 AW (60-80mesh) | /w on Celite | 25%w/w on Celite | 15% w/w on Gas-Chrom Q (100-120 mesh) 2 | w/w on Gas-Chrom Q (100-120mesh) | 1% w/w on Gag-Chrom Q (100-120mesh) | | COLUMN MATERIAL | glass 3% v | quartz glass bonded
glass wall-c
quartz glass bonded | quartz glass
quartz glass 3% v | quartz glass wall | quartz glass bonded
quartz glass bonded | quartz glass bonc
quartz glass wall | quartz glass bonc
glass 3% v
quartz glass wall | | quartz glass wall
quartz glass bonc | quartz glass bonc | quartz glass bonded
glass 3% w/w | quartz glass wall
quartz glass | quartz glass wall | quartz glass wall | aluminium 10%w/w | 25%w/w | 2584 | 15% | glass 18 v | glass 1% v | | IN STATIONARY IN PHASE | 0V-1 | OV-1
SP-2100
OV-1 | Me silicone
SE-30 | SE-30 | OV-1 Me silicone Me silicone 3-chloro Me silicone | .1
.30 | e silicone
e silicone
V-1
E-30 | -chloro
Me silicone
-nitro | SE-30
Me silicone | 3-nitro-9-
Me silicone | Me silicone
OV-1
Me silicone | Sci. SE-30
Me silicone
N-desalkyl | | 1 | Z-propenyi ester
SE-30 | enzyl egler
SE-30 | cinnamyi escei
SE-30
ethul ester | SE-30 | ov-1 | OV-1 | | LTP COLUMN INDEX ORIGIN | eugenol
1368 | Ienchone
1067 Hall
1067 Supelco
1067 Hall | fenitrothion
1922 HP
1944 PEC | zentanyı
2681 J&W Sci | fluoranthene
1352 Hall
2023 HP
2030 HP
fluoranthene,
2239 HP | 6 | GE P | າພິ | | Iluorene, 5-ni
2149 HP | 1698
HP
1705
1708 HP | 2741 J&W Sc
2788 HP
flurazebam. N- | | JAW | acid, | acto, | 1332 forming actid of | , actu, | 3280 | 3390
3390 | | LIT
REF | 38 | 46 | 46 | 32 | 46 | 32 | 38 | 46 | 46 | 46 | 19 | 21 | 21 | 21 | 21
21
21 | 19 | н | 49 | 23 | - | 44 | 47 | 44 | 44 | 40 | 15 | |---------------------------|---------------------------------------|--------------------------|-----------------------------|--------------------------|------------------------------|---------------------------|--|--------------------------|--------------------------|--------------------------|-----------------------|--|---|-----------------------|--|----------------------------|--|------------------------|---------------------------|--|------------------------|---------------------------|------------------------|------------------------|--------------------------|-------------------------------------| | SAMPLE TYPE | standard | food | food | standard | pooj | standard
essential oil | standard
standard | food | food | food | standard | standard | standard
standard | standard | standard
standard
standard | standard | standard | standard | standard | standard | tap water | standard | tap water | tap water | standard | standard | | LEN CARRIER (m) GAS | 2 | 80 nitrogen | 80 nitrogen | 100 helium | 80 nitrogen | 100 helium
50 helium | | 80 nitrogen | 80 nitrogen | 80 nitrogen | | 1.5 argon | 1.5 argon
1.5 argon | 1.5 | 1.5 argon
1.5 argon
1.5 argon | | 4 helium | 15 helium | 15 helium | 4 helium | 25 helium | 25 helium | 25 helium | 25 helium | 50 nitrogen | | | ID (mm) | 2.0 | 0.28 | 0.28 | 0.5 | 0.28 | 0.5 | 2.0 | 0.28 | 0.28 | 0.28 | | 4.00 | 4.00 | 4.00 | 4.00
4.00
4.00 | | 3.00 | 0.25 | 0.25 | 3.00 | | 0.20 | | | 0.2 | | | COLUMN TYPE | 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | 15% w/w Gas-Chrom Q (100-120 mesh)
bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | 25%w/w on Celite | trimethylsilyl derivative
10% w/w on Diatoport S (80-100mesh) | <pre>derivative 10% w/w on Diatoport S (80-100mesh) 10% w/w on Diatoport S (80-100mesh)</pre> | 0% w/w on Diatoport S | 10e
108 w/w on Diatoport S (80-100mesh)
108 w/w on Diatoport S (80-100mesh)
108 w/w on Diatoport S (80-100mesh) | W/w on Celite | 3% w/w on Chromosorb W HP (80-100mesh) | bonded phase | wall-coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh) | | | | | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | | glass | (furfuryl alcohol)
glass | glass | glass | , | quartz glass | n
I | glass | glass | | | trimethylsilyl der | , | trimethyl811Y1 derivative
1
1
1 | | glass | quartz glass | quartz glass | glass | | quartz glass | | | quartz glass | ethyl
stainless steel | | MN STATIONARY
IN PHASE | SE-30 | OV-101 | ymethyl
OV-101 | SE-30 | ionyl
OV-101 | ydro
SE-30 | SE-30 | (hydroymethy1)
OV-101 | 5-methyl
OV-101 | | methyl ester
SE-30 | 4-methoxypheny
OV-1 | phenylacetyl,
OV-1 | | Y1, | l, dimethyl ester
SE-30 | dibenzoate isomer OV-1 | en analog
DB-1 | Sci. SE-30 | OV-1 | Me silicone | ne
Me silicone | Me silicone | Me silicone | 1-bromo
Me silicone | 2,6,10,14-tetramethyl
SE-30 stai | | LTP COLUMN INDEX ORIGIN | furan
0498 | furan, 2-acetyl
0896 | furan, 2-hydr
0856 | furan, 2-methyl
0501 | furan, 2-propionyl
0984 Ö | ₽ | 0624 Hall
0626 | al, 5- | furfural, 5-m
0984 | furfuraldehyde
0812 | furoic acid, | glutamic acid,
2319 | glutamic acid,
2039 | | ine, | glutaric acid, | λŢ | guthion oxygen
2358 | haloperidol
2887 J&W S | harman
2000 | heneicosane
2100 HP | heptabarbitone
2098 HP | heptacosane
2700 HP | heptadecane
1700 HP | heptadecane,
2073 | heptadecane,
1893 | | LIT
REF | æ | ശനന | 40 | 40 | 40 | 8 | 82 | 8 | 7 | 81 | 8 | 7 | 40 | 37 | 8 | 8 | 8 | 7 | 3.2 | , « | 1 01 | 2 5 | ; ~ | 37 | |---|--------------------------|--|--------------------------------------|--------------------------|-------------------------------------|--------------------------|--------------------------|--------------------------|---|--|--|--------------------------|---------------------------------------|---|--------------------------|---|--------------------------|--------------------------|--------------------------|-----------------------|----------------------------------|--------------------------|--|--------------------------| | SAMPLE TYPE | standard | tap water
essential oil
standard | standard standard
standard | standard | standard | standard | standard | standard | gtandard | standard | standard | standard | standard | | ID LEN CARRIER (mm) (m) GAS | 0.20 50 nitrogen | 0.30 50 helium
0.30 50 helium | 0.2 50 nitrogen | 0.2 50 nitrogen | 0.2 50 nitrogen | 0.25 108 helium 0.2 50 nitrogen | 0.25 108 helium 0.27 100 | 0.25 108 helium | | .25 108 | 0.25 108 helium | .25 | 0.27 100 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular
bonded phase
bonded phase | wall-coated open tubular tubular
wall-coated open tubular | wall-coated open tubular | open o | open | wall-coated open tubular | uedo | wall-coated open tubular | | COLUMN MATERIAL | quartz glass | glass
quartz glass
quartz glass | quartz glass | quartz glass | quartz glass | l
glass | glass | glass | glass | glass | glass | glass | quartz glass | glass
soda glass | glass | glass | glass | glass | | soda grass | glass | , | dlass | soda glass | | LTP COLUMN STATIONARY
INDEX ORIGIN PHASE | ne, 1,6- | heptanal
0876 Supelco SP-2100
0876 Hall OV-1
0876 Hall OV-1 | heptane, 1-bromo
1027 Me silicone | | heptane, 1-iodo
1123 Me silicone | | _ OI | | heptane, 2,4,6-trimethyl
0874 Quadrex OV-101 | heptane, 2,4-dimethyl
0821 Quadrex OV-101 | heptane, 2,5-dimethyl
0833 Quadrex OV-101 | O. | heptane, 2-chloro
0894 Me silicone | heptane, 2-methyl
0761 Quadrex OV-101
0766 PEC OV-101 | a, 3,3-dime
Quadrex | heptane, 3-ethyl
0868 Quadrex OV-101 | - (3) | | e, 3-methyl
Quadrex | heptane, 4,4-dimethyl | Suadrek
e, 4-ethyl
Ouedrek | m | heptane, 4-propyl
0945 Onadrex OV-101 | e, n- | | LIT | 19 | 19 | 19 | 11 | 38 | നന | 'nΩ | 28 | 28 | 0.80 | 41 | 44 | 44 | 40 | 40 | 15 | 15 | 15 | ოო | 4
4
4 | 19
46 | 1
44
19 | 80 | ω | 80 | |----------------------------|-------------------------|------------------|-----------------------|--------------------------|---------------------------------------|---------------|---------------------------------------|---------------------|---------------------|--|-------------------------|-----------------------|-----------------------|--------------------------|--------------------------|---|-----------------------------|--------------------------|--|-----------------------|--|---|--------------------------|--------------------------|--------------------------| | SAMPLE TYPE | standard | standard | standard | | standard | essential oil | tap water | standard | standard | standard
standard | standard | tap water | tap water | standard | standard | standard | standard | standard | essential oil
standard | standard
tap water | standard
food | standard
tap water
standard | standard | standard | standard | | LEN CARRIER
(m) GAS | | | | 25 nitrogen | 22 | 50 helium | | 50 hydrogen | 50 hydrogen | 108 helium
50 nitrogen | | 25 helium | 25 helium | 50 nitrogen | 50 nitrogen | | | | 50 helium
50 helium | 25 helium | 80 nitrogen | 4 helium
25 helium | 50 nitrogen | 50 nitrogen | 50 nitrogen | | TD (mm) | | | | 0.30 | 2.0 | 0.30 | | 0.32 | 0.32 | 0.25 | | | | 0.2 | 0.2 | | | | 0.30 | | 0.28 | 3.00 | 0.20 | 0.20 | 0.20 | | COLUMN TYPE | 25%w/w on Celite | 25%w/w on Celite | 25%w/w on Celite | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) | bonded phase | poured phase wall-coated open tubular | bonded phase | bonded phase | wall-coated open tubular
wall-coated open tubular | | | | wall-coated open tubular | bonded phase
bonded phase | | 25%w/w on Celite
wall-coated open tubular | te) 3% w/w on Chromosorb W HP (80-100mesh) 25%w/w on Celite | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | | | | quartz glass | glass | glas | quartz glass
glass | quartz glass | quartz glass | glass
quartz glass | glass | | | quartz glass | quartz glass | thyl (phytane)
stainless steel | stainless steel | stainless steel | acid)
quartz glass
quartz glass | glass | glass | er (methyl palmitate)
glass
2 | quartz glass | quartz glass | quartz glass | | STATIONARY
PHASE | | ao - | methyl ester
SE-30 | SE-30 | OV-101
SE-30 | 0V-1 | OV-1
SP-2100 | 5-methyl-3-
OV-1 | 6-metny1-5-
OV-1 | OV-101
SE-30 | OV-1/SE-30 | Me silicone | Me silicone | 1-bromo
Me silicone | 1-chloro
Me silicone | 2, 6,
10, 14-tetramethyl (phyt
SE-30 stainless | 2, 6, 10-trimethyl
SE-30 | 3,7,11-trimethyl SE-30 | acid, (palmitic
OV-1
OV-1 | 7-1/SE-
silic | acid, ethyl ester
SE-30
OV-101 | acid, methyl ester OV-1 G. Me silicone SE-30 | SE-30 | SE-30 | SE-30 | | LTP COLUMN
INDEX ORIGIN | heptanoic acid,
1163 | acid, | c acid, | heptanol, 1-
0948 SGE | 0953
0955 | 5 | 0866 Hall
0866 Supelco | E | one, | heptene, 1-
0685 Quadrex
0689 | hexachlorophane
2807 | hexacosane
2600 HP | hexadecane
1600 HP | hexadecane, 1-br
1968 | hexadecane, 1-ch
1871 | hexadecane, 2,6, 1814 | hexadecane, 2,6, | hexadecane, 3,7,
1751 | hexadecanoic aci
1945 Hall
1945 Hall | | hexadecanoic aci
1979
1981 | canoic | | | hexadiene, 1,5-
0575 | | COLUMN MATERIAL | COLUMN TYPE | 9 H | | LEN CAR
(m) G | CARRIER
GAS | SAMPLE TYPE | |---|--|----------|---------------------------|-------------------------|------------------------|--| | quartz glass | wall-coated open tubular | яц | 0.20 | 50 nj | nitrogen | standard | | quartz glass | wall-coated open tubular | ar | 0.20 | 50 ni | nitrogen | standard | | quartz glass | wall-coated open tubular | ar | 0.20 | 50 ni | nitrogen | standard | | quartz glass
glass
quartz glass | bonded phase
wall-coated open tubular
bonded phase | ц | 0.30 | 50 he | 50 helium
50 helium | essential oil
tap water
standard | | quartz glass
glass
quartz glass | bonded phase
wall-coated open tubular
bonded phase | a r | 0.30 | 50 he | 50 helium
50 helium | standard
tap water
essential oil | | quartz glass | wall-coated open tubular | ar | ó.2 | 50 ni | nitrogen | standard | | quartz glass | wall-coated open tubular | аг | 0.2 | 50 nj | nitrogen | standard | | quartz glass | wall-coated open tubular | ar. | 0.2 | 50 nj | nitrogen | standard | | quartz glass | wall-coated open tubular | ar | 0.2 | 50 nj | nitrogen | standard | | quartz glass | wall-coated open tubular | ıe | 0.2 | 50 ni | nitrogen | standard | | glass | wall-coated open tubular | ar | 0.25 1 | 108 he | helium | standard | | glass | wall-coated open tubular | ar | 0.25 1 | 108 he | helium | standard | | glass
borosilicate glass
borosilicate glass | wall-coated open tubular wall-coated open tubular wall-coated open tubular | a a c c | 0.25 1
0.2
0.2 | 108 he
17
17 | helium | standard
standard
standard | | glass
soda glass | wall-coated open tubular
wall-coated open tubular | ar
ar | 0.25 1 0.27 1 | 08 he | 108 helium
100 | standard
standard | | glass | wall-coated open tubular | я | 0.25 1 | 108 he | helium | standard | | glass
soda glass | wall-coated open tubular wall-coated open tubular | ar
ar | 0.25 1 | 108 he
100 | helium | øtandard
øtandard | | glass
soda glass | wall-coated open tubular wall-coated open tubular | ar
ar | 0.25 1 | 108 he
100 | helium | standard
standard | | glass
soda glass | wall-coated open tubular
wall-coated open tubular | ar
ar | 0.25 1 | 108 helium
100 | | standard
standard | | quartz glass | wall-coated open tubular | a r | 0.2 | 50 nj | nitrogen | standard | | quartz glass | wall-coated open tubular | ar | 0.2 | 50 ni | nitrogen | standard | | glass
glass
eoda glass | wall-coated open tubular
wall-coated open tubular
wall-coated open tubular | ar
ar | 0.25 1
0.5 1
0.27 1 | 108 he
100 he
100 | helium
helium | standard
standard
standard | | | page 129 | | | | | | hexadiene, 2,5-dimethyl-2,40862 hexadiene, cis, trans-2,40663 hexadiene, trans, trans-2,40663 hexanal 0773 Ball 0773 Hall 0932 Supelco SP-2100 0932 Supelco SP-2100 0932 Ball 0932 Ball 0932 Hall 078-20-200 094-200-2000 095-2000 095-2000 095-2000 095-2000 095-2000 095-2000 095-2000 095-2000 095-2000 095-2000 095-2000 075-20000 075-20000 075-20000 075-20000 075-20000 075-20000 075-20000 075-20000 LIT REF LEN CARRIER a STATIONARY PHASE COLUMN silicone 2-chloro 2-methyl hexane, 0795 PEC | LIT
REF | 8 | 37 | 8 | 37 | 40 | 2
37 | 32
37 | m | 37 | 28 | 18 | 19 | 19 | 19 | 19 | 10
38 | നഗ | ÷ 88 | 80 | 10 | 10 | CJ 69 | ιń | |--------------------------------|--------------------------|--|-------------------------------|--|--------------------------|--|--|------------------------------|--------------------------|----------------------------|------------------------------------|------------------|----------------------------|------------------|-----------------------------|---|----------------------------|-------------------------|--------------------------|--------------------------|--------------------------|-------------------------------------|------------------------------------| | SAMPLE TYPE | standard | standard
standard | standard | standard
standard | standard | standard
standard | standard
standard
standard | essential oil | standard standard
standard | essential oil
tap water | standard | standard | ı standard | standard | standard
standard | tap water | | ID LEN CARRIER (mm) (m) GAS | 0.25 108 helium | 0.25 108 helium
0.27 100 | 0.25 108 helium | 0.25 108 helium
0.27 100 | 0.2 50 nitrogen | 0.25 108 helium
0.27 100 | 0.25 108 helium
0.5 100 helium
0.27 100 | 0.30 50 helium | 0.27 100 | 0.32 50 hydrogen standard | 3.6 | | | | | 0.30 25 nitrogen
2.0 2 | 0.30 50 helium | 0.30 50 helium
2.0 2 | 0.20 50 nitrogen | 0.30 25 nitrogen | 0.30 25 nitrogen | 0.25 108 helium
0.20 50 nitrogen | | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular wall-coated open tubular wall-coated open tubular | bonded phase | wall-coated open tubular | bonded phase | 10%w/w on Celite 560 AW(60-80mesh) | 25%w/w on Celite | 25%w/w on Celite | 25%w/w on Gelite | 25%w/w on Celite | wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | bonded phase | 100-120 mesh) | wall-coated open tubular | | COLUMN MATERIAL | glass | glass
soda glass | glass | glass
soda glass | quartz glass | glass
soda glass | glass
glass
soda glass | quartz glass | soda glass | quartz glass | er
aluminium | | | | | quartz glass | quartz glass | grantz
quartz glass | quartz glass | quartz glass | quartz glass | glass
quartz glass | glass | | COLUMN STATIONARY ORIGIN PHASE | amethy
101 | 3,3-dimethyl
Quadrex OV-101
PEC OV-101 | 3,4-diethyl
Quadrex OV-101 | 3,4-dimethyl
Quadrex OV-101
PEC OV-101 | 3-chloro
Me silicone | 3-ethyl
Quadrex OV-101
PEC OV-101 | 3-methyl
Quadrex OV-101
SE-30
PEC OV-101 | 5,5-dimethyl~2-
Hall OV-1 | | Z-ethyl
OV-1 | acid, 2-propenyl ester
SE-30 | ally1
SE-3 | acid, ethyl ester
SE-30 | hexyl e | acid, methyl ester
SE-30 | SE-30
SE-30 | 3-
all 0V-1 | , at co | | | trans-3- | 1-
Quadrex OV-101
SE-30 | 5,5-dimethyl-z-
Supelco SP-2100 | | LTP CC
INDEX OF | hexane, 3,3
0971 Qua | hexane, 3,3-
0735 Quac
0741 PEC | hexane, 3,4
0937 Qua | hexane, 3,4.
0764 Quac
0770 PEC | hexane, 3-c
0795 | hexane, 3-e
0770 Qua
0775 PEC | hexane, 3-me
0669 Quad
0675
0676 PEC | hexane, 5,5-
0709 Hall | hexane, n-
0600 PEC | hexanoic acid,
1117 SAC | hexanoic ad
1056 | | hexanoic ac
0981 | | | hexanol, 1-
0848 SGE
0854 | 9 | 0761 Hall
0768 | hexatriene,
0647 | hexen-1-01,
0818 SGE | 0 2 . | | hexene, 5,7
0709 Sup | | LIT | 21 | 21 | 21 | 21 | 21 | 21 | 7 | - | 21 | 21 | 23 | Ŋ | നന | | 28
8 | 00 | • | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 49 | - | 23 | 56 | |---------------------|------------------------|--------------------------------|--------------------------------|--|---|--------------------------------|---------------------------------------|---------------------------|---|---|--------------|--------------------------|---------------------------|---|-------------------------------|-------------------------|--------------|-------------------------|-----------------------------|---|---|-------------------------|-----------------------|--------------------------|-------------------|-----------------|--------------------------|---------------------| | SAMPLE TYPE | standard | standard | Btandard | standard tap water | standard
essential oil | | standard
standard | standard | | standard | LEN CARRIER (m) GAS | 1.5 argon | 4 helium | 4 helium | 1.5 argon | 1.5 argon | 50 hydrogen | | 50 helium
50 helium | | 50 hydrogen
50 nitrogen | 50 nitroden | | 15 helium 4 helium | 15 helium |
12 | | ID (mm) | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 3.00 | 3.00 | 4.00 | 4.00 | 0.32 | | 0.30 |)

 - | 0.32 | 0.20 | | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 3.00 | 0.25 | 0.20 | | | (80-100mesh) 0-100mesh) | (80-100mesh) | (80-100mesh) | | | | | | | | | | | | | | | | (80-100mesh) | | | | COLUMN TYPE | ß | on Diatoport S (8 | on Diatoport S (8 | iatoport S | iatoport S | C2 | romosorb W HP | 3≥ - | -i 03 | Ø | | wall-coated open tubular | | | open tubular | coen tubular | oben caparar | open tubular | wall-coated open tubular | | Chromosorb W HP | wall-coated open tubular | an. | | | 10% w/w on Diatoport | w/w & | M/M % | rimethylsilyl derivative
10% w/w on Diatoport | rimethylsilyl derivative 10% w/w on Diatoport | ve
10% w/w on Diatoport | 3% w/w on Chromosorb | | • | trimethylsilyl derivative
10% w/w on Diatoport | honded phase | wall-coated | bonded phase | polited pilase | bonded phase | | | wall-coated bonded phase | 38 w/w on Ch | wall-coated | bonded phase | | [NE | ı | derivative | derivative | /lsily | lsily | derivative
10 | | | theud | rimeth | MATERIAL | | | .yl de | imethy | imethy | yl de | _, | | scnox <u>y</u> j | 1y1), t: | , p | | glass | 71000 | glass | | grass | glass | glass | glass | | COLUMN MATERIA | ਰ | methylsil | methylsi] | ŭ | Ħ | methylsi] | -5-phenyl
qlass | glass | roxy-4-me | roxyphenj | , trees | | | 2 | tz | | quartz glass | quartz | quartz | | STATIONARY
PHASE | trimethylailyl
OV-1 | 2-hydroxy, trimethylsilyl OV-1 | 3-hydroxy, trimethylsilyl OV-1 | 3-hydroxy-4-methoxy,
OV-1 | 4-hydroxy-3-methoxy,
OV-1 | 4-methoxy, trimethylsilyl OV-1 | 5-(4-methylphenyl)-5-pheny OV-1 glass | 5-methyl-5-phenyl
OV-1 | beta-(3-hydroxy-4-methoxypheny1),
OV-1 | hydracrylic acid, beta-(3-hydroxyphen 1863 | phenyl | SP-2100 | ov-1 | OV-1
(boyrabydroindane) | (nexamyarozz
OV~1
SE~30 | trans (hexahydroindane) | SE-30 | SE-30 | SE-30 | ine
SE-30 | ine
SE-30 | SE-30 | SE-30 | SE-30 | nog
DB-1 | ov-1 | SE-30 | Me silicone | | COLUMN | acic, tri | acid, 2-h | acid, 3-h | acid, 3-h | acid, 4-h | acid, | | -meth | ic acid, | ic acid, | ne, 1,2-dil | 001 | | ֭֝֟֝֝֟֝֜֝֞֜֝֟֝֓֓֓֓֟֝֓֓֓֓֟֝֟֜֟֓֓֓֓֓֓֟֜֟֓֓֓֓֓֟֜֜֝֡֡֡֓֜֝֡֡֡֡֡֡֡֡֡֡ | in
N | e, trans | | | rphone
J&W Sci. 1 | umitriptyl)
J&W Sci. | nortriptyline
Jaw Sci. SE-30 | Sci. | W Sci. | JEW Sci. SE-30 | ygen ana | | N Sci. | 5-nitro
HP | | × | hippuric
1802 | ü | υ
C | ic | Ö | C | hydantoin, | hydantoin,
1866 | hydracrylic
2004 | hydracryl
1863 | .= | 1596 2 | | 1596 H | hydrindane,
0975 SAC | hydrindane, | 0955 | hydrocodone
2375 J&W | hydromorphone
2381 J&W S | hydroxyamitriptyline
2309 J&W Sci. SE- | hydroxynortriptyline
2325 Jaw Sci. SE- | hydroxyzine
2832 J&W | hyocyamine
2146 J& | ž | 1midan ox
2266 | 1095
1095 | Ξ. | 1ndan, 5-
1501 H | | LIT
REF | 3899516 | ശ | 2888
1 | 32 | 14
8 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 888888888888888888888888888888888888888 | 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 23 | 14 | |---------------------|---|--|---|--------------------------|---|---|--|--|--| | SAMPLE TYPE | standard
tap water
standard
standard
standard | tap water
essential oil | tap water
standard
standard
standard | standard | standard essential oil standard standard tap water standard | standard | standard
essential oil
standard
standard | standard
standard
standard | standard
standard | | LEN CARRIER (m) GAS | 108 helium
50 helium
50 helium
50 nitrogen
100 helium | 50 helium | epoxide)
25 hydrogen
50 hydrogen
4 helium | 100 helium | 25 helium
50 helium
50 nitrogen
50 helium
2
4 helium | 50 hydrogen
50 hydrogen | 25 hydrogen
50 helium
50 helium
50 hydrogen | 4 helium
2 nitrogen
50 nitrogen | 25 helium
:dene)
4 helium | | ID (mm) | 0.25
0.30
0.30
0.20
0.5 | 0.30 | hlor
0.22
0.32
3.00 | 0.5 | 0.50
0.30
0.20
0.30
2.0
3.00 | 0.32
0.32
0.32
0.32
0.32
0.32
0.32
0.33 | 0.22
0.30
0.30
0.32 | 3.00 5 | 0.50
chlo | | | | | (heptac
OOmesh) | | rr
rr
(100-120 mesh)
HP (80-100mesh)
H- (Alordanesh) | | | (80-100mesh) | (1-hydroxy
3-100mesh) | | COLUMN TYPE | wall-coated open tubular wall-coated open tubular bonded phase wall-coated open tubular wall-coated open tubular wall-coated open tubular | wall-coated open tubular
bonded phase | wall-coated open tubular 4,7,7a-tetrahydro-4,7-methano-1H- wall-coated open tubular bonded phase 3% w/w on Chromosorb W HP (80-1) | wall-coated open tubular | wall-coated open tubular bonded phase wall-coated open tubular bonded phase wall-coated open tubular 15% w/w on Gas-Chrom Q (10 3% w/w on Chromosorb W HP | ass bonded phase | _ | 3% w/w on Chromosorb W HP
3% w/w on Chromosorb W HP
wall-coated open tubular | wall-coated open tubular
7a-tetrahydro-4,7-methano-1
3% w/w on Chromosorb W HP | | COLUMN MATERIAL | glass
glass
quartz glass
quartz glass
quartz glass | nyl
glass
quartz glass | 3-epoxy-3a,
glass
glass | glass | glass
glass
glass | glass
glass
glass
glass
glass
glass
glass
glass
glass | 9919 | glass
quartz glass
quartz glass | 2,3-dihydro
SE-30
4,5,6,7,8,8-hexachloro-1-hydroxy-3a,4,7,
OV-1
glass | | STATIONARY
PHASE | OV-101
SP-2100
OV-1
OV-1
SE-30
SE-30 | 1,1,3-trimethyl-3-phenyl
Supelco SP-2100 gl
Hall OV-1 qu | Supelco SP-2100 glass 1,4,5,6,7,8,8-heptachloro-2, CHROMPAK CP Sil 5CB quartz SAC OV-1 quartz OV-1 glass OV-1/SE-30 glass | SE-30 | SE-30 glass OV-1 quartz SE-30 quartz OV-1 quartz SP-2100 glass SE-30 glass | 00-1
00-1
00-1
00-1
00-1
00-1
00-1
00-1
00-1
00-1
00-1
00-1
00-1 | CP Sil 5CB quartz
CV-1 quartz
CV-1 quartz
CV-1/SE-30 quartz | -1,
-30 | dro
SE-30
8,8-hexachloro
OV-1 | | COLUMN | Quadrex
Supelco
Hall | 1,1,3-trimet
Supelco SP-
Hall OV- | Supelcon
1,4,5,6,
CHROMPAK
SAC | T Moont 7 | 100 | SAC
SAC
SAC
SAC
SAC
SAC
SAC
SAC
SAC
SAC | OMP AK | PEC
1-methyl | 2,3-dihydro
SE
4,5,6,7,8,8 | | LTP | indane
1013
1014
1014
1014
1018 | indane,
1695
1695
indane. | 1081
indane,
1975
2012
2015
2015 | 1077 | 1017
1020
1023
1023
1023
1023
1059 | 16106,
1834
1834
1939
1939
2042
2042
2063
2063
2097
2097
2234
2234 | 1843
1870
1870
1873
1880 | 1890
1968
indene, | indene,
1012
indene,
1955 | | LIT
REF | ഹനന | | Ħ | 6 | ì | 19 | 80 | (| 7 | | 44
53 | ć | 67 | 27 | | 2.1 | - | | 27 | 27 | 3 | 27 | 27 | 7.7 | 2.7 | 27 | 27 | į | 77 | 7 6 | 10 | ì | 1 | 27 | 27 | 27 | 27 | |-------------------------|--|---------------------------|---------------------------|-------------------|------------------|------------------|--------------------------|--------------|-----------------------------------|--------------|---|---|--------------------------|---------------------------|-------------------|--------------------------|---------------------------|-------------------|-------|--------------------------|-------------------|--------|--------------|--------------------------|--------------------------|--------------------|--------------------------|-------------------|--------------------------|-----------|----------------|-------------------|---------------|--------------------------|--------------------------|-------------|--------------| | SAMPLE TYPE | tap water
standard
essential oil | standard | standard | atandard | | standard | standard | standard | Brandard | standard | standard
standard | | scandard | standard | | standard | standard | | | standard | Scandard | | | standard | standard | | standard | | standard | | standard | 5 | standard | standard | standard | | | | LEN CARRIER (m) GAS | 50 helium
50 helium | 4 helium | 4 helium | | | | 50 nitrogen | 4 helium | | 4 | 15 helium
2 nitrogen | 1 | 2 | 42 helium | | 42 helium | 4 helium | | | 50 nitrogen | | | 50 hydrogen | 42 hellum | 50 hydrogen | | 42 helium | | 50 nyarogen | | 42 helium | | | 50 nitrogen | 50 nitroden | 50 hydrogen | | | ID (mm) | 0.30 | 3.00 | 3.00 | | | | 0.20 | 3.00 | 07.0 | 3,00 | 0.25 | 9 | 67.0 | 0.30 | 0 | 05.0 | 3.00 | | 0.30 | 0.30 | ? | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | ć | 9.00 | 900 | 0.30 |)

 - | 3.00 | 0.30 | 0.30 | 0.30 | 0.30 | | | | (80-100mesh) | (80-100mesh) | | | | | (80-100mesh) | (captan) | (80-100mesh) | (80-100mesh) | | | | | | (80-100mesh) | • | | | | | | | | | | | | | | | (80-100 mesh) | | | | | | COLUMN TYPE |
wall-coated open tubular
bonded phase
bonded phase | 3% w/w on Chromosorb W HP | 3% w/w on Chromosorb W HP | osew, on Celite | 5 | 25%w/w on Celite | wall-coated open tubular | mosorb W HP | -[(trich]oromethy])this]-1H- | HP | bonded phase
3% w/w on Chromosorb W HP | ! | wall-coated open tubutar | wall-coated open tubular | | wall-coated open tubular | 3% w/w on Chromosorb W HP | | oben | wall-coated open tubular | ii odo | oben | -coated open | wall-coated open tubular | wall-coated open tubular | -coated open tubul | wall-coated open tubular | | wait-coated open tubular | 1 | coated open | | | wall-coated open tubular | wall-coated open tubular | -coated | -coated open | | COLUMN MATERIAL | glass
quartz glass
quartz glass | glass | qlass | er
er | H | | quartz glass | | quartz glass
7 7s-tetrabudro-2 | Jass | quartz glass
quartz qlass | ١ ٦ | quartz glass | glass | ester | glass | ם
נ | | glass | glass | 1 20 | glass | glass | glass | olass
olass | glass | glass | u, | glass | G + R. S. | grass
glass | 1 | glass | glass | glass | glass | glass | | STATIONARY
PHASE | SP-2100
OV-1
OV-1 | 0V-1 | 0V-1 | cinnamyl est | isobutyl ester | SE-30 | | one,
1 | Me silicone (107) | 111 | DB-1
SE-30 | | 5E-30
butul octul | SE-30 | decyl ethyl | SE-30 | | dibutyl este | V-101 | ov-101 | diethyl este | OV-101 | - | SE-30 | uilleptyi est
OV-101 | | SE-30 | dihexyl este | OV-101 | | | dimethyl est | ov-1 | OV-101 | arpentyr est
OV-101 | | | | LTP COLUMN INDEX ORIGIN | , octahydro
Supelco
Hall
Hall | indole
1276 | isatin
1712 | isobutanoic acid, | isobutvric acid, | 0901 | • | ole-1,3 | 2077 HP | 2 | 2019
2030 PEC | drine | 1339 J&W SC1. | asophenalic actu,
2419 | isophthalic acid, | | 13opnenalic acid, | isophthalic acid, | | 2025 | 1300hthalic acid, | 1638 | 1638 | 1639 | 180phthalle actu, | 2605 | 2608 | isophthalic acid, | 2414 | # T # Z | 2417 | isophthalic acid, | | 1512 | 1sophthalic acid, | 2219 | 2222 | | LITREF | 72
72
72 | 27 | 27 | 27 | 58 | 80 | 19 | 23 | 21 | 21 | 20 | 21 | 21
20 | 20 | 17 | 19
46 | 23 | 23 | 23 | m | 71 60 | 4.5 | 4. 4.
5. 5. | 13
1 | 13 | 13 | |---------------------|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--|-------------------------------------|-----------------------------------|-------------------------------------|---|---------------------------------|-------------------------------------|---|--------------------------|--------------------------|--------------------------|---------------|--|----------|------------------|--|---|---| | SAMPLE TYPE | standard
standard
standard | standard standard
standard | standard | scandard | standard
food | standard | standard | standard | essential oil | standard | standard | standard | standard
standard | standard | standard | | LEN CARRIER (m) GAS | H H H | 42 helium | 42 helium | 42 helium | 20 nitrogen | 50 nitrogen | | 15 helium | 1.5 argon | 1.5 | 2.4 | 1.5 argon | 1.5 argon
2.4 nitrogen | 2.4 | | 80 nitrogen | 15 helium | 15 helium | 15 helium | 50 | 100 nellum
50 nitrogen | 50 | 20 | <pre>6.1 nitrogen 4 helium</pre> | 6.1 nitrogen | 6.1 nitrogen | | OI (mm) | 0.30 | 0.30 | 0.30 | 0.30 | 0.23 | 0.20 | | 0.25 | 4.00 | 4.00 | 5.50 | 4.00 | 4.00
5.50 | 5.50 | | 0.28 | 0.25 | 0.25 | 0.25 | 0.30 | 0.20 | 0.27 | 0.27 | 3.20 | 3.20 | 3.20 | | COLUMN TYPE | wall-coated open tubular wall-coated open tubular wall-coated open tubular | 25%w/w on Celite | wall-coated open tubular | derivative 10% w/w on Diatoport S (80-100mesh) 10% w/w on Diatoport S (80-100mesh) | derivative
atoport S | lerivative
w/w on Chromosorb W | 10% w/w on Diatoport S (80-100mesh) | methylsilyl derivative
10% w/w on Diatoport S (80-100mesh)
13% w/w on Chromosorb W AW | % w/w on Chromosorb W | 10% W/W on Diacopoic S (00-100mesm) | 25%w/w on Celite wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | o o | wall-coated open tubular
wall-coated open tubular | | | 10%w/w on Chromosorb W HMDS (60-80mesh) 3% w/w on Chromosorb W HP (80-100mesh) | 10%w/w on Chromosorb W HMDS (60-80mesh) | 10%w/w on Chromosorb W HMDS (60-80mesh) | | COLUMN MATERIAL | ear
glass
glass
glass | pentyl ester
glass | | . ester
glass | glass | quartz glass | អ្ន | quartz glass | trimethylsilyl d | | tri | • | trı | trimethylsilyl derivative
13 | | glass | quartz glass | quartz glass | quartz glass | quartz glass | glass
quartz qlass | | glass | stainless steel
glass | stainless steel | stainless steel | | STATIONARY
PHASE | dipropy
OV-101
OV-101
SE-30 | heptyl
SE-30 | methyl
SE-30 | nonyl propyl
SE-30 | OV-101 | | cinnamyl ester
SE-30 | | beta-(3-indoly1),
OV-1 | beta-(4-hydroxy-3-methoxyph
OV-1 | beta-(4-hydroxyphenyl),
SE-30 | ov-1 | ဋ | nyl,
0 | OV-1
ethyl ester | | SE-30 | SE-30 | SE-30 | | OV-101
SE-30 | | OV-101
OV-101 | SE-30
OV-1 | d-
SE-30 | SE-30 | | COLUMN |
 0 | D. | lic acid, | lic acid, | line | lin | ic acıd, | ന | acid, beta | acid, bet | acid, bet | | | acid, beta | acid, eth | | phan
J&W Sci. | nol
J&W Sci. | ne
J&W Sci. | наіі | Quadrex | | | | oxide, | | | LTP
INDEX | isophthalic
1828
1828
1828 | isophthali
2416 | isophthali
2459 | isophthalic
2419 | isoquinoline
1248 | isotetralin
1179 | isovaleric
1663 | ketamine
1798 | | lactic ac | | | lactic ad
1795
1797 | | 1587
Jactic ad | 0801 | levallorphan
2306 J&W | levorphanol
2169 JæW | lidocaine
1842 J | ě | 1018 (| 1029 | 1031 | 1051
1053 | limonene
1148 | linalool
1082 | | LIT
REF | 4 | 4 | 25 | 25 | 23 | 23 | н | ŗ | 19 | 19 | 41 | 21 | 21 | 21 | 21 | 21 | 23 | 23 | 13 | 13 | 13 | 13 | 13 | 13
8 | 23 | 23 | |---|--|---------------------------|-------------------------------------|-------------------------------------|----------------------------------|---------------------------------|--|--|-------------------------------------|-----------------------------------|--|---|--|---|---|---|------------------------------------|----------------------------------|---|---|---|---|---|---|---------------------------------|-----------------------------------| | SAMPLE TYPE | standard standard
standard | standard Btandard | standard | standard | standard
standard | standard | standard | | ID LEN CARRIER (rm) (m) GAS | | | 3.00 3.0 | 3.00 3.0 | 0.25 15 helium | 0.25 15 helium | 3.00 4 helium | 3.00 4 helium | | | 0.32 15 helium
3.00 4 helium | 4.00 1.5 argon | 0.25 15 helium | 0.25 15 helium | 3.20 6.1 nitrogen | 3.20 6.1 nitrogen
0.20 50 nitrogen | 0.25 15 helium | 0.25 15 helium | | COLUMN TYPE | | | 18 w/w on Gas-Chrom Q (100-120mesh) | 18 w/w on Gas-Chrom Q (100-120mesh) | wall-coated open tubular | wall-coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 25%w/w on Celite | 25%w/w on Celite | wall-coated open tubular
3% w/w on Chromosorb W HP (80-100mesh) | derivative
10% w/w on Diatoport S (80-100mesh) | | <pre>1y1 derivative
10% w/w on Diatoport S (80-100mesh)</pre> | tive
10% w/w on Diatoport S (80-100mesh) | 10% w/w on Diatoport S (80-100mesh) | wall-coated open tubular | wall-coated open tubular | 10%w/w on Chromosorb W HMDS (60-80mesh) | 10%w/w on Chromosorb W HMDS(60-80mesh) wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | glass | glass | glass | glass | quartz glass | quartz glass | glass | glass | | | lene
quartz glass
glass | trimethylsilyl | trimethylsilyl derivative | 4-hydroxy-3-methoxy, trimethylsilyl OV-1 | trimethylsilyl derivative 10 | derivative | quartz glass | quartz glass | stainless steel | stainless steel
quartz glass | quartz glass | quartz glass | | LTP COLUMN STATIONARY
INDEX ORIGIN PHASE | linoleic acid, cis-
1309 OV-1/SE-30 | linolenic acid OV-1/SE-30 | lophenol
3215 OV-1 | lophenone
3210 OV-1 | lorazepam
2353 J&W Sci. SE-30 | loxepine
2542 J&W Sci. SE-30 | | acid, diethyl e
OV-1 | malonic acid, diethyl ester
1035 | malonic acid, dimethyl ester 0895 | trile, 4-ch
J&W SCI | ic acid, 3,4-dihydro | mandelic acid, 4-hydroxy, tri
1794 OV-1 | mandelic acid, 4-hydroxy-3-me
1892 OV-1 | mandelic acid, 4-methoxy, tri
1691 OV-1 | mandelic acid, trimethylsilyl derivative 1469 | maprotiline
2296 J&W Sci. SE-30 | meclizine
3000 J&W Sci. SE-30 | menth-4(8)-ene, p-
0998 SE-30 | -en-1 | n-2-c | 7 | I . | menthene, 1-
0985 SE-30
1019 SE-30 | mepazine
2500 J&W Sci. SE-30 |
meperidine
1720 J&W Sci. SE-30 | | LIT
REF | 23 | 23 | 23 | e e e | 32 | നന | ๛๛ | ოო | ოო | 1 | 23 | 23 | 4 | 13 | 13 | 23
4
47 | 23 | 28 | 40 | 40 | меме | |--------------------------|-----------------------------|--------------------------------|------------------------------|--|--|--|---|---|--|--|----------------------------|-------------------------------|-------------------|---|---|---|--------------------------|------------------|--------------------------|--------------------------|--| | SAMPLE TYPE | standard | standard | standard | standard
standard | standard | standard
standard | standard
standard | standard
standard | standard
standard | standard | standard | standard | standard | standard | standard | standard
standard
standard | standard | ı standard | ı standard | standard | essential oil
standard
tap water
standard | | LEN CARRIER (m) GAS | 15 helium | 15 helium | 15 helium | 50 helium
50 helium | | 50 helium
50 helium | 50 helium
50 helium | 50 helium
50 helium | 50 helium
50 helium | 4 helium | 15 helium | 15 helium | | 6.1 nitrogen | 6.1 nitrogen | 15 helium
25 helium | 15 helium | 50 hydrogen | 50 nitrogen | 50 nitrogen | 50 helium
50 helium
50 helium | | ID (mm) | 0.25 | 0.25 | 0.25 | 6.00 | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 | 3.00 | 0.25 | 0.25 | | 3.20 | 3.20 | 0.25 | 0.25 | 0.32 | 0.2 | 0.2 | 0.30
0.30
0.30 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase bonded phase | wall-coated open tubular | bonded phase
bonded phase | bonded phase
bonded phase | bonded phase
bonded phase | bonded phase
bonded phase | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | wall-coated open tubular | | 10%w/w on Chromosorb W HMDS (60-80mesh) | 10%w/w on Chromosorb W HMDS (60-80mesh) | wall-coated open tubular | wall-coated open tubular | bonded phase | wall-coated open tubular | wall-coated open tubular | bonded phase
bonded phase
wall-coated open tubular
bonded phase | | COLUMN MATERIAL | quartz glass | quartz glass | quartz glass | nioi)
quartz glass
quartz glass | grass
glass | quartz glass
quartz glass | quartz glass
quartz glass | quartz glass
quartz glass | quartz glass
quartz glass | glass | quartz glass | quartz glass | glass | stainless steel | stainless steel | quartz glass
glass
quartz glass | M | quartz glass | quartz glass | quartz glass | quartz glass
quartz glass
glass
quartz glass | | STATIONARY
PHASE | SE-30 | SE-30 | SE-30 | (1-propen-3-th101)
OV-1 quart | SE-30
opy1
SE-30 | y1
OV-1
OV-1 | Py1
OV-1
OV-1 | 1
OV-1
OV-1 | y1
ov-1
ov-1 | 1
0V-1 | SE-30 | SE-30 | OV-1/SE-30 | SE-30 | SE-30 | SE-30
OV-1/SE-30
Me silicone | SE-30 | bis-(methylthio) | oro
Me silicone | Me silicone | bromochlorolodo
 | | LITP COLUMN INDEX ORIGIN | mephenesin
1518 J&W Sci. | mephentermine
1236 J&W Sci. | mepivicaine
2025 Jaw Sci. | mercaptan, ally1
0575 SAC
0583 SAC | 0778 SE-
mercaptan, isopropyl
0654 SE- | mercaptan, n-butyl
0692 SAC O
0696 SAC O | mercaptan, n-propyl
0580 SAC OV
0596 SAC OV | mercaptan, pentyl
0795 SAC
0808 SAC | mercaptan, s-butyl
0647 SAC O
0681 SAC O | > | mescaline
1657 J&W Sci. | mesoridazine
3326 J&W Sci. | mestranol
2612 | meth-1-ene, p-
1205 | meth-2-ene, P-
0985 | methadone
2121 J&W Sci.
2148
2194 HP | | | | | methane, bromoch.
0877 Hall
0883 Hall
0884 Supelco
0884 Hall | | LIT
REF | 4
70 0 0 0 0 0 | 0 4 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 32
40
38 | ოოო иო | 40
83 | 38 | 4 K 4 K 6 K 6 K 6 K 6 K 6 K 6 K 6 K 6 K | . 04
. ww | |---------------------|--|------------------------------|--|---|---|--|--|--|---|---| | SAMPLE TYPE | tap water
standard
essential oil
standard
standard
standard | standard | standard
standard
standard | standard standard essential oil standard standard standard | standard
standard
standard | standard
standard
essential oil
tap water
standard | standard
essential oil
tap water | | standard standard tap water standard essential oil standard standard | | | LEN CARRIER (m) GAS | 50 nitrogen
50 helium
50 helium
50 helium
50 helium | | 50 nitrogen
25 hydrogen
25 hydrogen | 50 helium
50 helium
50 helium
50 helium
50 hydrogen
50 nitrogen | 100 helium
50 nitrogen
2 | 50 helium
50 helium
50 helium
50 helium | 50 nitrogen
50 helium | | 50 nitrogen 100 helium 50 nitrogen 50 helium 50 helium 60 belium | 50 50 | | (mm) | 0.2
0.30
0.30
0.30
0.30 | 0.2 | 0.2
0.31
0.31 | 0.30
0.30
0.30
0.30
0.32
0.32 | 0.5 | 0.30
0.30
0.30 | 0.2 | 0.2 | 0.2
0.30
0.30
0.30 | | | COLUMN TYPE | wall-coated open tubular
wall-coated open tubular
bonded phase
bonded phase
bonded phase | | wall-coated open tubular
bonded phase
bonded phase | bonded phase bonded phase bonded phase bonded phase wall-coated open tubular bonded phase bonded phase wall-coated open tubular | wall-coated open tubular
wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | bonded phase
bonded phase
bonded phase
wall-coated open tubular
bonded phase | wall-coated open tubular
bonded phase
wall-coated open tubular | -coated open
4/w on Gas-Ch | wall-coated open tubular wall-coated open tubular wall-coated open tubular wall-coated open tubular bonded phase bonded phase 15% w/w on Gas-Chrom Q (100-120 mesh) | bonded phase wall-coated open tubular bonded phase bonded phase | | COLUMN MATERIAL | glass quartz glass quartz glass quartz glass quartz glass quartz glass | glas | quartz glass
glass
glass | quartz glass
quartz glass
quartz glass
quartz glass
quartz glass
quartz glass | glass
quartz glass | quartz glass
quartz glass
quartz glass
glass
quartz glass | quartz glass
quartz glass
glass | quartz glass | glas
glas
glas
glas | quartz glass
quartz glass
quartz glass
quartz glass | | STATIONARY
PHASE | chloro
SP-2100
Me silicone
OV-1
OV-1
OV-1 | ich]
Me | Me silicone
OVI-1/SE-54
OVI-1/SE-54 | ochloro
OV-1
OV-1
OV-1
OV-1
SP-2100
OV-1
OV-1
Me silicone | ro
SE-30
Me silicone
SE-30 | roiodo
OV-1
OV-1
OV-1
SP-2100
OV-1 | Me silicone
71
OV-1
SP-2100 | Me silicone
SE-30 | Me silicone
aloro
SE-30
SP-2100
Me silicone
OV-1
SE-30 | ov-1
odo
Me silicone
mo
ov-1
ov-1 | | COLUMN | _α mmmm | | ш ш | a, dibromochloro Hall 0V-1 Hall 0V-1 Hall 0V-1 Supelco SP-21 Hall 0V-1 SAC 0V-1 | e, dichloro | | ΞS | e, lodo Me
e, nitro SE
e, tetrabromo | | Hall O e, tetraiodo M e, tribromo Hall O Hall | | LTP
INDEX | methane
0678
0691
0693
0694
0696 | methane,
0752
methane, | 0680
0700
0700 | methane
0753
0759
0762
0766
0768
0768
0768 | methane
0515
0524
0524 | methane
0779
0786
0787
0795 | methane,
0904
methane,
1445 | methane,
0518
methane,
0536 | 1054
methane
0646
0646
0655
0657
0667 | 0673
methane,
1862
methane,
0822
0822 | | LIT
REF | 78 B | v E 4 | 40 | 32 | 40 | æ r | לענ | 40 | 40 | 40 | 49 | 38
11 | 23 | 47 | 23 | 23 | 23 | 23 | ოო | 49 | 49 | 23 | 49 | 23 | | |---------------------|--|--|----------------------------|----------------------------|--------------|------------------------|---------------------------------|--------------------------------|---|--------------------------|---|--|--------------------------------|-------------------------|-------------------------------|------------------------------|------------------------------------|------------------------------|--|-----------------------|-------------------------|------------------------------|---------------|---------------------------|--------------------------| | SAMPLE TYPE | essential oil
standard
standard | tap water
standard
tap water | | standard | standard | standard | | standard | standard | standard | standard | standard
standard | standard | standard | standard | standard | standard | standard | essential
oil
standard | standard | standard | standard | standard | standard | standard | | LEN CARRIER (m) GAS | 50 helium
50 hydrogen
50 helium | 50 helium | | 100 helium | | | | 50 nitrogen | 50 nitrogen | 50 nitrogen | 15 helium | 2
25 nitrogen | 15 helium | 25 helium | 15 helium | 15 helium | 15 helium | 15 helium | 50 helium
50 helium | 15 helium | 4 helium | | OI (mm) | 0.30
0.32
0.30 | 0:30 | 0.2 | 0.5 | 0.30 | 2.0 | 0.00 | 0.2 | 0.2 | 0.2 | 0.25 | 2.0 | 0.25 | 0.20 | 0.25 | 0.25 | 0.25 | 0.25 | 0.30 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 3.00 | | COLUMN TYPE | | n tubular | open tubular | open tubular | n tubular | Chrom Q (100-120 mesh) | open tubular | n tubular | n tubular | open tubular | N'-(4-chloro-2-methylphenyl)-N,N-dimethyl (fundal, chlordimeform)
DB-1 quartz glass bonded phase | w/w on Gas-Chrom Q (100-120 mesh)
1-coated open tubular | open tubular | | open tubular | en tubular | an tubular | en tubular | | | | en tubular | | en tubular | nosorb W HP (80-100mesh) | | 8 | bonded phase
bonded phase
bonded phase | wall-coated open tubular
bonded phase | wall-coated ope | wall-coated ope | bonded phase | 15% w/w on Gas-Chrom Q | bonded phase
wall-coated ope | wall-coated open | wall-coated open | wall-coated ope | ,N-dimethyl (fund
bonded phase | 15% w/w on Gas-
wall-coated ope | wall-coated ope | | wall-coated ope | wall-coated open | wall-coated open | wall-coated open | bonded phase
bonded phase | bonded phase | bonded phase | wall-coated open tubular | bonded phase | wall-coated open tubular | 3% w/w on Chromosorb | | COLUMN MATERIAL | | | quartz glass | | quartz glass | | quartz glass
glass | quartz glass | copicrin)
quartz glass | quartz glass | -2-methylphenyl)-N,
quartz glass | quartz glass
quartz glass | g
quartz glass | quartz glass | quartz glass | quartz glass | quartz glass | glass | | STATIONARY
PHASE | (cont)
DV-1
DV-1 | SP-2100
OV-1 | Me silicone
Me silicone | ro
SE-30 | 0V-1 | Me silicone
SE-30 | OV-1
SP-2100 | trichlorofluoro
Me silicone | trichloronitro (chloropicrin)
Me silicone quartz g | Me silicone | N'-(4-chloro
DB-1 | SE-30
SE-30 | SE-30 | Me silicone | SE-30 | SE-30 | e
SE-30 | SE-30 | ketone
OV-1
OV-1 | oxygen analog
DB-1 | DB-1 | SE-30 | DB-1 | SE-30 | OV-1 | | × | methane, tribromo 0840 Hall 0852 SAC | | - | methane, trichloro
0595 | 0603 Hall | 6090
6090 | III () | methane, trichlo | ď | methane, triiodo
1243 | methanimidamide,
1655 | methanol
0384
0475 SGE | methapyrilene
1952 J&W Sci. | methaqualone
2197 HP | methdilazine
2421 J&W Sci. | methenamine
1191 J&W Sci. | methotrimeprazine
2490 J&W Sci. | methoxamine
1700 J&W Sci. | methyl isopropyl
0651 Hall
0651 Hall | methyl parathion 1747 | methylphenidate
1702 | methyprylon
1489 J&W Sci. | mobam
1873 | morphine
2367 J&W Sci. | morpholine
0810 | | LIT | 13 | m | 23 | 23 | 23 | 56 | ო | m | | יי ת | 28 | 28 | 7 | | . თ | ĸ | ιń | 52 | 5 C | 55.5 | 33 | - | 44 | 30 | 8 | 1,
0, 41 | 28 | 1 | 53 | 40 | | | -1 -5 | m | 28 | m · | 53 | ř | 48 | - - | 53 | |---------------------|--|---------------------|--------------------------|--------------------------|--------------------------|---------------------|--------------|----------|--------------|---------------------------|--------------|--------------|----------|-----------|--------------------------|----------|--------------------------|--------------|-------------------------|----------------------|--------------------------|---------------|-------------|-------------|------------------------------|-----------------------|-----------------------|------------------------|--------------|--------------------------|----------------------------|----------------|--------------------|---------------|-------------|----------|---------------------------|-----------------------------|---|---|---------------------------| | SAMPLE TYPE | standard
standard | essential oil | standard standard
cesontial oil | | standard | standard | standard | gtandard | standard | tap water | standard | scandard | standard | standard | standard | tap water | standard | 77
40
10
10 | standard | standard | standard | standard | standard | in) | standard | standard | essential oil | standard | standard | standard | | standard | standard | standard | | LEN CARRIER (m) GAS | 50 nitrogen
6.1 nitrogen | 50 helium | 15 helium | 15 helium | 15 helium | 12 | 50 helium | | | 50 helium | | | | 50 helium | | | | 25 hydrogen | oo nellum
100 helium | | | | | 25 nitrogen | i)
25 budrogen | , | 50 hydrogen | 4 helium | 2 nitrogen | 50 nitrogen | ano (dieldri | A helium | | 50 helium | 50 hydrogen | | 2 nitrogen
50 nitrogen | ano (endrin) | 25 hydrogen | | 2 nitrogen | | I QI (muu) | 0.20 | 0.30 | 0.25 | 0.25 | 0.25 | 0.20 | 0.30 | 0.30 | 0.20 | 02.0 | 0.32 | 0.32 | | 0.20 | 0.20 | 0.30 | | 0.31 | 0.00 | - | 0.23 | 3.00 | ; | 0.33 2 | aldrii
0 22 | 7 7 7 | 0.32 | 3.00 | Ŋ | 0.2 | dimeth | 77.0 | 90.0 | 0.30 | 0.32 | 0.30 | 0.7 | dimeth | 0.22 | ? | ις | | " | | _ | (80-100mesh) | | | 8-dimetnano (| | | _ | (80-100mesh) | , | -exo-1,4:5,8- | 1001.007 | | | | | (80-100mesh) | -exo-1,4:5,8- | 1400-1001 | | (80-100mesh) | | COLUMN TYPE | wall-coated open tubular
10%w/w on Chromosorb W HMDS(60-80mesh) | bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase | ропред праве | | -coated open | wall-coated open tubular | bonded phase | bonded phase | oben | | wall-coated open tubular | | wall-coated open tubular | bonded phase | bonded phase | | wall-coated open tubular | romosorb W HP | | tubular | ,8-hexanydro-exo-1,4-endo-5, | | bonded phase | w/w on Chromosorb W HP | ι۵ | wall-coated open tubular | ပ္ပ | 28 / Attention | | bonded phase | | | 3% w/w on Chromosorb W HP | 1,4,4a,5,6,7,8,8a-octahydro | wall-coated open tubular 0.22 25 hydrogen | | 3% w/w on Chromosorb W HP | | COLUMN MATERIAL | quartz glass
stainless steel | quartz glass | merty alaga | ,. O | Q, | Б | quartz glass | יסת
יסת | | <u>6</u> | quartz grass | ,, 0 | 1 | , | quartz glass | ים ול
קור המים ול | dlass | glass | | glass | -1,4,4,5,8 | quartz grass
glass | grees
quartz qlass | | quartz glass | Jlass | -6,7-ерожу | quartz glass | grass | quartz qlass | | • | quartz glass | 9-6,7-epoxy | quartz glass | ginata
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | guartz glass | | STATIONARY
PHASE | SE-30
SE-30 | o
0V-1 | SE-30 | SE-30 | SE-30 | o
Me silicone | 0,17 | ov -1 | SE-30 | ov-1 | 0V-1 | ov-1 | ov-101 | ov-1 | 0V-1 | OV-1 | SP-2100 | OV1-1/SE-54 | 0V-1 | DE-30 |) | OV-1 | Me silicone | SE-30 | | OV-1/SE-30 | OV-1 | OV-1 | SE-30 | Me silicone | 2, 3, 4, 10, 10-hexachloro | CF S11 SCB | OV-1
OV-1/SE-30 | | 0V-1 | ov-1 | SE-30 | ,3,4,10,10-he | CP Sil 5CB | OV-1 | SE-30 | | COLUMN | | , dihydro | ine
J&W Sci. | JEW Sci. | line
J&W Sci. | , 2-nitro
HP | ene. | Hall | | ļ | Hall | SAC | Quadrex | | | наіі | Supelco | HP. | Hall | 8 | 30 | | HP | | | CHROMPAK | SAC | <u>}</u> | PEC | | - 1 | CHROMPAK | | Hall | SAC | Hall | PEC | | = | | PEC | | LTP
INDEX | myrcene
0983
0984 | myrcenol,
1062 B | nalorphine
2510 J& | naloxone
2608 | naphazoline
1958 J&W | naphthal,
1659 H | 7 | | | | 1155 | | | 1157 | 1157 | | | | | | 1184 | 1186 | | 1189 | a] | 1906 | | | | | 7 | | 2100 | | | | 2170 | naphthalene, | 2121 | 2165 | | | LIT | аюммі | 38 | æ | 33 | 33 | 67 60 | 38 | ζ) α | 33 | 33 | 26 | 33 | 33 | 33 | 56 | 56 | 28 | 55.5 | , | 0 01 | 33 | 33 | 8 21 0 | າທເ | 332 | |--|--|--|--------------------------|--|--------------------------|--|-----------------------|---|--------------|--------------------------|--------------|--------------------------|--------------------------|--------------------------|--------------|--------------|--|---|-----------------|--------------|--------------|-------------------------------|--|--------------------------|---| | LEN CARRIER (m) GAS SAMPLE TYPE | 108 helium standard
50 nitrogen standard
50 helium standard
50 helium essential oil | tap water
100 helium standard
2 standard | 50 nitrogen standard | 50 nitrogen standard
50 standard | 50 standard | 108 helium standard | | 108 helium standard
50 mitrogen standard | | 50 standard | 12 standard | 50 standard | 50 standard | 50 standard | 12 standard | 12 standard | hydrogen | 25 herrum cap water
25 hydrogen standard
25 hydrogen standard | | helium | | 50 standard | 50 nitrogen standard
108 helium standard
50 helium standard | | neilum essential
helium standard
standard | | (mm) | 0.25
0.20
0.30 | 0.5 | 0.20 | 0.20 | 0.23 | 0.25 | 0.23 | 0.25 | 0.23 | 0.23 | 0.20 | 0.23 | 0.23 | 0.23 | 0.20 | 0.20 | 0.32 | 0.31 | 0 | 0.25 | 0.23 | 0.23 | 0.20 | | 0.5 | | COLUMN TYPE | open | <pre>wall-coated open tubular wall-coated open tubular 15% w/w on Gas-Chrom Q (100-120 mesh)</pre> | wall-coated open tubular | wall-coated open tubular wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | open tubular | Wall-coated open tubular |
open tubular | wall-coated open tubular | bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase | bonded phase | bonded phase | bonded phase
bonded phase | to the tribular | open tubular | open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular
bonded phase | wall-cofted open tubular | open tubular
open tubular | | COLUMN MATERIAL | ro (tetralin)
glass
quartz glass
quartz glass
quartz glass | glass
glass | quartz glass | quartz glass
glass | glass | ָ
֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֩֞֞֞֞֩ | quatiz grass
glass | glass | 5 | glass | quartz glass | glass | glass | glass | quartz glass | quartz glass | quartz glass | glass
glass | 200 | 2
1
1 | glass | glass | quartz glass
glass
quartz glass | 0 0 0 | | | LTP COLUMN STATIONARY INDEX ORIGIN PHASE | alene, 1,2,3,4-tetra
Quadrex OV-101
SE-30
Hall OV-1
Hall OV-1 | 1144 Supelco SP-2100
1151 SE-30
1232 SE-30 | ene, | naphthaiene, 1,2-aimethyi
1430 SE-30
1432 OV-1 | | naphthalene, 1,3-dimechyl
1391 Quadrex OV-101 | - | naphtharene, 1,4 Calmethyr
1409 Quadrex CV-101 | | | | | | | | | naphthalene, 1-chloro
1348 SAC OV-1 | HB HB | alene, 1-et | Quadrex | alene, 1-is | 1501
naphthalene, 1-methyl | ₩. | Supelco | 7 | LIT
REF | 33 | 33 | 22 | 30
30 | 33 | | æ r. |) | 8 | 2 6 | ? | 2 | 80 | 33 | o | , a | ? | 28 | ţ | x 0 | 2 E |) | 33 | (| 33 | 43 | | ∞ ⋅ | O1 0 | n 1 | n m | 32 | 33 | - | ע | , | ကျ | ഹന | |------------------------|--------------------------------|--------------------------|-------------------------|--|------------------------------|-------------|--------------------------|-------------|--------------|--------------------------|-------------|--------------------------|--------------|--------------------------|-------------|--------------------------|-----------------|--------------|-------------|--------------------------|----------------|----------------------|--------------------------|--------------------------|--------------------------|---------------------------------------|-------------|--------------|--|--------------------------|-----------------------|--------------------------|----------|--|--|------------|--------------|--| | SAMPLE TYPE | standard | standard | standard | standard
. standard | standard | | standard
standard | | | standard | | standard | ı ətandard | standard | | standard | | n standard | | | standard | \$
\$
\$
\$ | standard | | standard | tap water | | | standard | standard
ton motor | cap water | | standard | standard | standard | | standard | tap water
essential oil | | LEN CARRIER
(m) GAS | | 50 | 12 | 12
25 nitrogen | 50 | | 50 nitrogen | | | 108 helium
50 | > | 108 helium | 50 nitrogen | 20 | | oo microgen
50 |)
) | 50 hydrogen | | 30 nicrogen | | , | 50 | Ç. | 20 | 50 helium | | | 108 hellum
50 belium | | 50 helium | | | 4 helium | 12 | | 50 helium | 50 helium | | I QI
(mm) | 0.23 | 0.23 | 0.20 | 0.33 | 0.23 | | 0.20 |)
1
• | | 0.25 1 |) | | 0.20 | 0.23 | 0 | 0.0 |)
1
• | 0.32 | ć | 0.40 | | | 0.23 | 6 | 0.23 | 0.30 | | | 22.0 | 2 | 0.30 | ıs. | 0.23 | 3.00 | 0.20 | | 0.30 | 0.30 | | COLUMN TYPE | tubu | wall-coated open tubular | bonded phase | bonded phase
wall-coated open tubular | wall-coated open tubular | ı | wall-coated open tubular | i. | oben | wall-coated open tubular | ;
; | wall-coated open tubular | | wall-coated open tubular | | wall-coated open tubular | 1 | bonded phase | ! | wall-coated open tubular | open | 1 | wall-coated open tubular | 1 | wall-coated open tubular | | | oben | wall-coated open tubular
bonded where | well-costed onen tubulen | | wall-coated open tubular | H | 3% w/w on Chromosorb W HP (80-100mesh) | bonded phase | • | bonded phase | wall-coated open tubular
bonded phase | | AT | glasø | glass | glas | quartz glass
quartz glass | glass | | quartz glass | d tags | quartz glass | glass | | qlass | quartz glass | glass | - | quartz glass | 1 | quartz glass | ŕ | quartz glass | glass
glass | 1 | glass | · · | glass | quartz glass | | quartz glass | glass
martz alass | 4 | grass
quartz glass | | glass | glass | quartz qlass | 1 | quartz glass | grass
quartz glass | | 22 | naphthalene, 1-n-butyl
1555 | | alene, 1-nitro
HP Me | 1579 HP Me silicone
1586 SGE SE-30 | naphthalene, 2,3,5-trimethyl | alene, 2,3, | 1515 SE-30 | alene, 2,3- | SE-30 | 1411 Quadrex OV-101 | 1 and 2.6- | | SE-30 | | alene, 2,7- | 1389 SE-30 | alene, 2-chloro | | alene, 2-et | SE-30 | | alene, 2-is | | naphthalene, 2-isopropyl | | naphthalene, z-methoxy
1410 OV-101 | alene, 2-me | • | 126/ Quadrex OV-101 | Gundles CD-1 | Hall OV-1 | SE-30 | OV-1 | 0V-1 | naphthalene, 2-methyl-1-nitro
1590 HP Me silicone | lene, 2-me | OV-1 | | | LIT | 32 | 33 | 33 | 56
30 | 56 | 33 | 8 | 80 | Ħ | 44 | 3 6 | നസ | | · · | - i | н | 59 | = | 23 | 47 | 38 | 48 | 44 | 15 | 15 | |--------------------------------|----------------------------|--------------------------|--------------------------|--|-------------------------|--------------------------|--------------------------|--------------------------|--|-------------------------|--|--|--------------------------|----------|---------------------------------|--|------------------------------------|--|--------------------------|-------------------------------|---------------------------------------|---------------------------|-----------------------|---|--------------------------| | SAMPLE TYPE | standard | standard | standard | standard
standard | standard | standard | standard | standard | standard | tap water | standard
standard | tap water
essential oil | | | scandard | standard | standard | standard | standard | øtandard
standard | standard | standard | tap water | standard | standard
standard | | LEN CARRIER (m) GAS | 100 helium | 50 | 50 | 12
25 nitrogen | 12 | 50 | 50 | 50 nitrogen | 4 helium | 25 helium | 108 helium
50 helium | 50 helium | | | mnTTau F | 4 helium | 2 nitrogen | 4 helium | 15 helium | 25 helium | 7 | 25 hydrogen | 25 helium | | | | ID (mm) | 0.5 | 0.23 | 0.23 | 0.20 | 0.20 | 0.23 | 0.23 | 0.20 | 3.00 | | 0.25 | 0.30 | 000 | | 3.00 | 3.00 | 0.32 | 3.00 | 0.25 | 0.20 | 2.0 | 0.22 | | | | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase
wall-coated open tubular | bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh) | | wall-coated open tubular
bonded phase | wall-coated open tubular
bonded phase | well-costed onen tuhuler | \$ 10 mm | ä | 3% w/w on Chromosorb W HP (80-100mesh) | Chromosorb P AW DMCS (60-80 mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | | 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | to
glass | glass | glass | quartz glass
quartz glass | quartz glass | glass | glass | quartz glass | glass | | glass
quartz glass | | 96. | | grass | glass | | glass | quartz glass | quartz glass
glass | | quartz glass | 14 | metny.
stainless steel
byl | glass
gtainless steel | | COLUMN STATIONARY ORIGIN PHASE | 2-methyltetrahydr
SE-30 | 2-n-buty1
OV-1 | 2-n-propy1
OV-1 | Z-nitro
Me silicone
SE-30 | 2-phenyl
Me silicone | 2-sec-butyl
OV-1 | Z-t-buty1
OV-1 | SE-30 | bromo isomer
OV-1 | | decahydro
rex OV-101
OV-1 | lco SP-2100
OV-1 | tetrachloro (TCN) | orc | 1760 OV-1
naphthonitrile, 1- | 0V-1 | naphthoguinone, 1,4"
1427 SE-30 | mide
OV-1 | W Sci. SE-30 | Me silicone
OV-1/SE-30 | opane, 2-
SE-30 | trans
OMPAK CP Sil 5CB | | 2,0,10,14,10-penta
SE-30
2 6 10 14-tetramet | OV-1/SE-30
SE-30 | | LTP
INDEX | naphthalene,
1208 | naphthalene,
1564 | naphthalene,
1465 | naphthalene,
1610 HP
1631 SGE | naphthalene,
1935 HP | naphthalene,
1521 | naphthalene,
1502 | naphchalene,
1403 | naphthalene,
1434 | naphthalene,
1462 HP | naphthalene,
1043 Quad
1045 Hall | 1045 | naphtha | naphtha | 1760
naphtho | 1489 | 1427 | nicotinamide
1475 | nicotine
1315 | nitrazepam
2740 HP
2750 | nitropropane,
0676 | nonachlor,
2067 CHF | nonadecane
1900 HP | 2141 | 2020 | | LIT | നഗന | 40 | 40 | 15 | 64 | 61 | 77 | 61 | 8 | 19 | 1 [[| , , | , , | ന | ∾ ∾ | • | 48
28 | - | 23 | 033 | 23 | 23 | 23 | 38 | H | 44 | 40 | |---------------------|--|--------------------------|--------------------------|--------------------------|---------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|-----------------------|---------|------------------|---------------|---------------------------|-----------------------------------|--|----------------------|-----------------------------|-------------------------|-----------|---|--------------------------|-------------------|-------------------------------------|-----------------------|--------------------------| | SAMPLE TYPE |
standard
tap water
essential oil | standard | | tap water | essential oil | standard | | standard
standard | | standard | בי מלה מל
הי מלה מלה | standard | standard | standard | standard | standard | tap water | standard | | LEN CARRIER (m) GAS | 50 helium
50 helium | 50 nitrogen | 50 nitrogen | | 108 helium | 4 helium | | | mortan oo | 50 helium | 108 hellum
50 nitrogen | | 25 hydrogen
50 hydrogen | | | 15 helinm | 15 helium | 15 helium | 15 helium | 7 | 4 helium | 25 helium | 50 nitrogen | | I OII (mm) | 0.30 | 0.2 | 0.2 | | 0.25] | 0.25 | 0.25] | 0.25 | 0.25 | 3,00 | 0.30 | | | 0.30 | | | 0.22 | 3.00 | 0.25 | 0 25 | 0.25 | 0.25 | 0.25 | 2.0 | 3.00 | | 0.2 | | | | | | | | | | | | (80-100mesh) | | | | | | dosulphan) | ı | (80-100mesh) | | | | | | (100-120 mesh) | (80-100mesh) | | | | COLUMN TYPE | bonded phase
wall-coated open tubular
bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | w on Celite | on on one tubula | | oben | | wall-coated open tubular | cyclic sulphite, 5- (endosulphan) | wall-coated open tubular
bonded phase | w on Chromosorb W HP | wall-coated open tubular | "costed onen tubular | open | wall-coated open tubular | wall-coated open tubular | Gas-Chrom Q | inoleate)
w/w on Chromosorb W HP | | wall-coated open tubular | | ral. | | wall- | wall- | | | wall- | wall- | wall- | | 1)
258w/w
38 w/w | wall- | -[| wall- | bonde | Wall | -hexachloro, cyc | wall-
bonde | 3% W/W | wall- | to a 1 | wall- | wall- | wall- | 158 W | (metnyi linoieate)
3% w/w on C | | wall- | | COLUMN MATERIAL | | quartz glass | quartz glass | stainless steel | | glass | glass | glass | | (pelargonic acid) | grass
quartz glass | h | glass | quartz glass | glass | yuar cz. y
1, 5, 6, 7, 7 | quartz g | 1 | guartz glass | | ,, 0, | quartz glass | quartz glass | • | ester, 9,12° (1
glass | | quartz glass | | STATIONARY
PHASE | OV-1
SP-2100
OV-1 | Me silicone | Me silicone | thyl
SE-30 | | ov-101 | OV-101 | OV-101 | 0V-101 | acid, methyl ester ()
SE-30
OW-1 | SE-30 | , , | SE-30
SP-2100 | 0V-1 | OV-101 | nol, 1, | g) | OV-1 | SE-30 | 30 | SE-30 | mide
SE-30 | SE-30 | | 2100 Ov-1 | Me silicone | omo
Me silicone | | COLUMN | Hall
Supelco
Hall | 1-bromo | 1-chloro | 2,6-dimethyl | 2-methyl
Quadrex | 3-ethyl
Quadrex | 3-methyl
Quadrex | 4-methyl
Quadrex | 5-methyl
Quadrex | cacid, m | , 1-
SGE | 1- | Supelco | Hall | Quadrex | ene-2,3-d | CHROMPAK | an | ridine
J&W Sci. | norpropoxyphene | J&W Sci. | norpropoxypheneamide 2505 Jaw Sci. SE-3 | yline
Jaw Sci. | ne : | adienoic | | ane, l-bromo
Me | | INDEX | nonanal
1084
1084
1084 | nonane,
1238 | nonane, | nonane, | nonane,
0964 | nonane,
0993 | nonane,
0970 | nonane,
0955 | nonane,
0960 | | nonanol, | nonene, | 0884 | 0884 | 0887 | norborn | 2039 | norharman | normeperidine
1738 J&W S | norprop | 2370 | norprop
2505 | nortripyline
2174 J&W | oct-1-yne
0811 | octadec
2100 | octadecane
1800 HP | octadecane,
2180 | | LIT | 40 | 40 | 15 | 44 | 19 | 119 | 44
L | 46 | 46
1 | | 80 | אינה | าค | 40 | 40 | 40 | 40 | 40 | М | 87 | 13 | 2 | 81 | 7 | 81 | 2 | 2 | |-------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|----------------------------|---------------------------|---------------------------|--------------------------|--|--------------------------------------|--------------------------|--------------------------|------------------------------|--------------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|---------------------------------|--------------------------|--------------------------------|--------------------------|--------------------------|---------------------------------| | SAMPLE TYPE | standard | standard | standard | tap water | standard | standard | tap water
standard | food | food
standard | standard | standard | tap water | standard
essential oil | standard standard
standard | standard | gtandard | standard | standard | standard | standard | | LEN CARRIER (m) GAS | 50 nitrogen | 50 nitrogen | | 25 helium | | | | 80 nitrogen | 80 nitrogen
4 helium | 4 helium | 50 nitrogen | 50 bolism | 50 helium | 50 nitrogen | 108 helium | 108 helium | 6.1 nitrogen
108 helium | 108 helium | | (mm) | 0.2 | 0.2 | | | | | 3.00 | 0.28 | $0.28 \\ 3.00$ | 3.00 | 0.20 | 0 | 0:30 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.25 | 0.25 | 3.20 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | | | • | | | | | | (80-100mesh) | | (80-100mesh) | (80-100mesh) | | | | | | | | | | | (60-80mesh) | | | | | | | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | 25%w/w on Celite |)
25%w/w on Celite | 3% w/w on Chromosorb W HP | wall-coated open tubular | wall-coated open tubular 3% w/w on Chromosorb W HP | oleate)
3% w/w on Chromosorb W HP | wall-coated open tubular | wall-coated open tubular | bonded phase
bonded phase | wall-coated open tubular 10%w/w on Chromosorb W HMDS (60-80mesh) wall-coated open tubular | | COLUMN MATERIAL | quartz glass | rtz glass | inless steel | (þ) | | (methyl stearate | | lass | lass (conf. del. | cis-9- (methyl o | quartz glass | | quartz glass
quartz glass | quartz glass | glass | glass | stainless steel
glass | glass | glass | glass | glass | glass | glass | | MN STATIONARY SIN PHASE | 1-chloro
Me silicone | Me silicone | | acid (stearic acid) Me silicone | acid, ethyl ester
SE-30 | acid, methyl ester, SE-30 | icone | OV-101 g | | acid, methyl este
OV-1 | 7-
SE-30 | SP-2100 | 0V-1
0V-1 | -dibromo
Me silicone | 1,8-dichloro
Me silicone | omo
Me silicone | loro
Me ailicone | do Me silicone | chyl
OV-101 | 101 | Chadrex OV-101 | Z, 7-dimethyl
Quadrex OV-101 | ayı
cek OV-101 | 5,5-dimetnyi
Quadrex OV-101 | 'y'.
cex OV-101 | cex ov-101 | 4,4-dimecnyi
Quadrex OV-101 | | LTP COLUMN INDEX ORIGIN | | | octadecane, 2
1984 | octadecanoic
2170 HP | octadecanoic
2175 | octadecanoic
2098 | 2112 HP
2116 | | 2149
2175 | ic | octadiene, 1,7
0777 | - | Hal
Hal | octane, 1,8-d
1523 | octane, 1,8-d
1330 | | octane, 1-chloro
1048 | | | | | | | _ | | | octane, 4,4-dim
0920 Quadrex | | LIT
REF | 8 | 81 | 37 | 19 | 19 | 19 | 19 | 11 | 13 | 13 | ശനന | 3 8 | 13 | 13 | 13 | 4 | 4 | 23 | | 19 | 19 | 23 | 23 | |-------------------------|--------------------------|--------------------------|--------------------------|-------------------------|----------------------|----------------------|--|--|---|---|--|---|--|---|---|--------------------|------------------|---|--|------------------------|------------------------|--------------------------|--------------------------| | SAMPLE TYPE | standard | standard | standard | standard | standard | standard | standard
standard | standard
standard | standard | standard | tap water
standard
essential oil | standard
standard
standard | standard | LEN CARRIER (m) GAS | 108 helium | 108 helium | 100 | | | | 4 helium | 25 nitrogen
50 hydrogen | 6.1 nitrogen | 6.1 nitrogen | 50 helium
50 helium | 108 helium
50 nitrogen
2 | 6.1 nitrogen | 6.1 nitrogen | 6.1 nitrogen | | | 15 helium
15 helium | 4 helium | | | 15 helium | 15 helium | | Of (mm) | 0.25 | 0.25 | 0.27 | | | | 3.00 | 0.30 | 3.20 | 3.20 | 0.30 | 0.25
0.20
2.0 | 3.20 | 3.20 | 3.20 | | | 0.25 | 3.00 | | | 0.25 | 0.25 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | 25%w/w on Celite | 25%w/w on Celite | 25%w/w on Celite | 25%w/w on Celite
3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular
bonded phase | 10%w/w on Chromosorb W HMDS (60-80mesh) | 10%w/w on Chromosorb W HMDS (60-80mesh) | wall-coated open tubular
bonded phase
bonded phase | wall-coated open tubular wall-coated open tubular 15% w/w on Gas-Chrom Q (100-120 mesh) | 10%w/w on Chromosorb W HMDS(60-80mesh) | 10%w/w on Chromosorb W HMDS (60-80mesh) | 10%w/w on Chromosorb W HMDS (60-80mesh) | | | ass wall-coated open tubular
4-dichloro-5-isopropoxyphenyl)-1,3,4- (oxadiazon)
ass bonded phase | 3% w/w on Chromosorb W HP (80-100mesh) | 25%w/w on Celite | 25%w/w on Celite | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | glass | glass | | l ester | | | (methyl caprylate) | quartz glass
quartz glass | 40 | stainless steel | glass
quartz glass
quartz glass | glass
quartz glass | stainless steel | stainless steel | stainless steel | glass | glass | 00 quartz glass
5-tert-butyl-3-(2,4-dichlo
quartz glass | glass | | | quartz glass | quartz glass | | N STATIONARY
N PHASE | 1
x 0V-101 | ут
ж ov-101 | OV-101 | 2-keto, methyl
SE-30 | allyl ester
SE-30 | ethyl ester
SE-30 | ester | SE-30
OV-1 | 3, 7-dimethyl-1 $SE-30$ | 3,7-dimethy $1-3SE-30$ | o SP-2100
OV-1
OV-1 | x OV-101
SE-30
SE-30 | 7-dimethyL-1
SE-30 |
7-dimethy1-2
SE-30 | 3,/-dimethyl-3
SE-30 | OV-1/SE-30 | OV-1/SE-30 | i. SE-30
 -one, 5-tert-1
 DB-1 | dicyclohexyl
0V-1 | diethyl ester
SE-30 | Imetnyi ester
SE-30 | i. SE-30 | i. SE-30 | | COLUMN | 4-ethyl
Quadrex | 4-metnyl
Quadrex | n-
PEC | acid, | acid, | acid, | acid, | 1-
SGE | | | , 4-
Supelco
Hall
Hall | 1-
Quadrex | 3,7-di | 3, 7-du | 3, /-dl. | 0] | | drine
J&W Sci.
51-2(3H)- | acid, d | | cia, | JEW Sci. | J&W Sci. | | LTP
INDEX | octane,
0961 | | octane,
0800 | octanoic acid,
1200 | octanoic
1262 | octanoic
1181 | octanoic
1109
1130 | ` | octanol,
1190 | octanol,
1091 | e e | octene,
0786
0789
0790 | | | octene,
0922 | oestradiol
2659 | 0estrio1
2970 | orphenadrine
1915 J&W Sci. SE-3
oxadiazol-2(3H)-one,
2158 DB-1 | oxalic a | oxalic a
0948 | 0837 | 2810 | 2271 J | | LIT
REF | 1 | 23 | 23 | 23 | 47 | 4 | 4.9
8.8 | 38 | 28
15 | 15 | 15 | 80 | æ | 80 | æ | 80 | 46 | 40 | 38 | 40 | т | 40 | 40 | 40 | 40 | 40 | |----------------------------|--|----------------------------|--------------------------------|------------------------------|-----------------------|---------------------|--------------------------------------|---------------------------------------|---|-----------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|---|---------------------------------------|--------------------------|--|--------------------------|--------------------------|--------------------------|--------------------------------|--------------------------| | SAMPLE TYPE | standard | standard | standard | standard | standard | standard | standard
standard | standard | standard
standard | standard food | standard | standard | standard | standard | ı standard | ı standard | ı standard | ı standard | atandard | | LEN CARRIER (m) GAS | 4 helium | 15 helium | 15 helium | 15 helium | 25 helium | | 15 helium
50 hydrogen | 2 | 50 hydrogen | | | 50 nitrogen | 80 nitrogen | 50 nitrogen | 7 | 50 nitrogen | 4 helium | 50 nitrogen | | OI (mm) | 3.00 | 0.25 | 0.25 | 0.25 | 0.20 | | 0.25 | 2.0 | 0.32 | | | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.28 | 0.2 | 2.0 | 0.2 | 3.00 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | COLUMN TYPE | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | | bonded phase
bonded phase | 15% w/w on Gas-Chrom Q (100-120 mesh) | bonded phase
wall-coated open tubular | wall-coated 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | | COLUMN MATERIAL | glass | quartz glass | quartz glass | quartz glass | quartz glass | glass | quartz glass
quartz glass | | sthyl (pristane)
quartz glass
stainless steel | stainless steel | stainless steel | quartz glass | quartz glass | quartz glass | quartz glass | 3-
quartz glass | glass | -hexafluoro
quartz glass | | quartz glass | ine)
glass | quartz glass | quartz glass | quartz glass | quartz glass | and to the con | | STATIONARY
PHASE | (PPO) | SE-30 | SE-30 | SE-30 | Me silicone | OV-1/SE-30 | n analog
DB-1
OV-1 | SE-30 | 6,10,14-tetramethyl
OV-1 quart
SE-30 stain | 2, 6, 10-trimethyl
SE-30 | 3,7,11-trimethy;
SE-30 | -
SE-30 | | -dimethyl-1,3-
SE-30 | 4-methyl-1,3-
SE-30 | trans-1-methyl-1,3
SE-30 | -
ov-101 | 4-dione, 1,1,1,5,5,5-hexafluoro
Me silicone quartz gla | SE-30 | 4-dibromo
Me silicone | amino (cadaverine)
OV-1 gla | bromo
Me silicone | chloro
Me silicone | o
Me silicone | -bromo-4-methyl
Me silicone | ro
Me ailicope | | LTP COLUMN
INDEX ORIGIN | oxazole, 2,5-diphenyl
2050 OV-1 | oxycodone
2453 J&W Sci. | oxymetalozine
2123 J&W Sci. | oxymorphone
2462 J&W Sci. | papaverine
2818 HP | paracetanol
1687 | parathion oxygen
1901
1915 SAC | penta-2,4-dione 0843 | 7 | pentadecane, 2,6
1650 | pentadecane, 3,7
1658 | | 1,4 | | | | pentadione, 2,3-0675 | • | pentanal
0679 | pentane, 1,4-dik
1103 | pentane, 1,5-diamino
1035 0V-1 | | | - | - | pentane, 1-chloro | | 7 | |----| | 4 | | _ | | Φ | | 5 | | ₫ | | Q, | | | | LIT | 40 | 37
37 | 2 | 37 | E E | 8 | OI FO | ហ | 37 | 7 | 37 | | 40 | 2 5 | 37 | 37 | 8 | ç |)
F | 40 | 2 | 32 | c | 37 | 37 | 37 | 8 | ហ |) m | | |-----------------------------|--------------------------|--|----------------------------------|--|--|--------------------------|--------------------------|--|----------------------------|--------------------------|-----------------------------|--------------------------|----------------------------|-----------------|--------------------------|--|--------------------------|---|--------------------------|-------------------------------------|-----------------------------------|--|----------------------------|--|----------|--|--------------------------|--------------------------|------------------------------|--| | SAMPLE TYPE | standard | standard
standard | standard | standard | standard
standard | standard | standard
standard | | essential oil
standard | standard | standard | | standard | standard | standard | standard | standard | | scandard | standard | standard | standard
standard | 4.00 | standard | standard | standard | standard | tap water | standard
essential oil | | | ID LEN CARRIER (mm) (m) GAS | 0.2 50 nitrogen | 0.25 108 helium
0.27 100 | 0.25 108 helium | 5 1 | 0.2 17
0.2 17 | 0.25 108 helium | 0.25 108 helium |) | 0.30 50 helium
0.27 100 | 0.25 108 helium | 17 | | 0.2 50 nitrogen | | 7] | 0.2 17 | 0.25 108 helium | Ü | 0.2 SU mitrogen | 0.2 50 nitrogen | 5 108 | 0.5 100 helium
0.27 100 | | 7 100 | 0.2 17 | | 0.25 108 helium | | | | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | Wall-coated open tubular | bonded phase
wall-coated open tubular | | wall-costed onen tubular | oben | wall-coated open tuburar | wall-coated open tubular | oben | wall-coated open tubular | coated open | wall-coated open tubular | • | wall-coated open tubular | wall-coated open tubular | uedo | wall-coated open tubular
wall-coated open tubular | ;
; | wall-coated open tubular
wall-coated open tubular | oben | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase
bonded phase | | | COLUMN MATERIAL | quartz glass | | glasa | 886 | borosilicate glass
borosilicate glass | | , | quartz glass
glass | grantz glass
goda glass | · ! | grass
borosilicate glass | soda glass | quartz glass | qlавв | lass | borosilicate glass
borosilicate qlass | | | quartz glass | quartz glass | qlass | glass
ands alses | 1 | glass
goda glass | | borosilicate glass
borosilicate glass | glass | , | quartz glass
quartz glass | | | N STATIONARY
N PHASE | lo
Me silicone | 1-tetramethyl
OV-101
OV-101 | rimethyl
OV-101 | nethyl
OV-101
OV-101 | OV-1 | trimethyl
OV-101 | crimethyl
OV-101 | OV-1
SP-2100 | OV-1
OV-101 | ã. | | OV-101 | Z,4-albromo
Me silicone | E E | | OV~1
SR-30 | <u>s</u> | ^ | Me silicone | Z-bromo-z,4-dimetnyi
Me silicone | :hyl
ex OV-101 | SE-30 | 3,3-dimethyl | ex OV-101
OV-101 | 0V-1 | SE-30
OV-1 | hy1
ex OV-101 | <u> </u> | 0V-1
0V-1 | | | LITP COLUMN INDEX ORIGIN | pentane, 1-iodo
0912 | 9
OH | pentane, 2,2,4-t
0686 Quadrex | | | , ₁ , | , , , | 0744 Hall | | ٠ ؞ ٔ | | | pentane, 2,4-c
1003 | pentane, 2,4-di | | 0632 PEC | , n | ō | | | pentane, 2-methyl
0562 Ouadrex | | 05/0 FEC
pentane, 3,3-c | 0646 Quadrex | | 0658 PEC
0671 PEC | ,
O | ຸ
ດ | 0973 Hall
0973 Hall | | | N CARRIER SAMPLE TYPE THE SERVICE TYPE | 8 helium standard
0 standard | 8 helium standard | 18 helium standard
10 helium standard | 0 standard | tap water
50 helium standard | helium | 6 standard | 25 nitrogen standard
2 standard | 25 nitrogen standard
25 nitrogen standard | 50 hydrogen standard | tap water | 50 helium standard | tap water | 50 nellum essential oll | 50 helium essential oil | | 50 standard | | 50 hydrogen standard | 50 helium essential oil | cap water
50 helium standard | | 1.5 nitrogen standard | 15 helium standard | 25 nitrogen standard | 25 nitrogen standard | 50 nitrogen standard | 50 nitrogen standard | | |---|--|------------------------------------|--|--------------------------|---------------------------------|--------|------------------------------------|---|--|--|--|-------------------------|--------------|-------------------------|-------------------------|--------------------------|-------------|---------------------------------------
----------------------|-------------------------------|--|---------------------------|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------|---| | ID LEN
(mm) (m) | 0.25 108
0.27 100 | 0.25 108 | 0.25 108
0.5 100 | 0.27 100 | 0.30 | | 3.6 | 0.30 2 | 0.30 | 0.32 | | 0.30 | | 06.0 | 0.30 | | 0.27 | | 0.32 | 0.30 | 0 | | 2.4 1 | 0.25 | 0.30 | 0.30 | 0.20 | 0.20 | | | COLUMN TYPE | Wall-coated open tubular
Wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | phase | 10%w/w on Celite 560 AW(60-80mesh) | wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | bonded phase | wall-coated open tubular | ketone)
bonded phase | open tubular | bonded phase | | Waii-coated open tuburar | | 15% w/w on Gas-Chrom Q (100-120 mesh) | bonded phase | | wall-coated open tubular
bonded bhase | as-Chrom Q (100-120 mesh) | Chromosorb W DCMS (100-120 mesh) | wall-coated open tubular | • | | COLUMN MATERIAL | glass
soda glass | glass | glass
glass | soda glass | glass | artz | aluminium
aluminium | quartz glass | quartz glass
quartz glass | quartz glass | glass | yl-3-, (di-t-butyl | glass | quartz glass | quartz glass | glass | glass | glass | quartz glass | quartz glass | glass
martz glass |)

 | glass | quartz glass | | | STATIONARY
PHASE | -2-methyl
OV-101
OV-101 | 3-ethyl-3-methyl
juadrex OV-101 | 1
OV-101
SE-30 | OV-101 | 2,2,4-trin
SP-2100 | | 2-propenyl es
SE-30 | SE-30
SE-30 | SE-30
SE-30 | y1-2-
ov-1 | Y1-z-SP-2100 | 2,2,4,4-tetramethyl | SP-2100 | 0V-1 | OV-1 | SP-2100
OV-101 | OV-101 | OV-101
SE-30 | ov-1 | 4-methy1-2-1 | SP-2100
OV-1 | SE-30 | dimethyl
SE-30 | SE-30 | SE-30 | SE-30 | SE-30 | 1-1-
SE-30 | | | LTP COLUMN
INDEX ORIGIN | e, 3-ethyl
Quadrex
PEC | pentane, 3-ethyl-
0764 Quadrex | pentane, 3-methyl
0578 Quadrex
0584 | pentane, n-
0500 PEC | 'n | | cid, | Ü | | pentanol, 2-methyl-2-
0723 SAC OV-1 | pentanol, 4-methy1-z-
0748 Supelco SP-2 | one, | 0955 Supelco | 0955 Hall | ne, 2-
Hall | 0639 Supelco | 0662 | 0662
0671 | SAC | pentanone, 4-met
0720 Hall | 0720 Supelco | 0724 nail | de, | 02 | | 1 02 | | pentene, 2-methyl-1-
0589 SE-3 | | LIT | œ | œ | 4 47 | 48 | 48 | 28 | 4 | 21
21 | 8 9 | य य (
य | 30 | æ | 56 | 44 | 80 | 44 | 56 | - | 23 | 23 | 23 | 23 | 56 | 56 | 23 | |--------------------------|--|--|--|--|--|--|---|--|--|---
--|--|--|--|--|--|--|--|--|--|--|--|--|--| | standard | standard | standard
standard | standard | standard | standard | standard
standard | standard
standard | standard
standard | | | | standard | tap water | standard | tap water | standard | 50 nitrogen | 50 nitrogen | 25 helium | 25 hydrogen | 25 hydrogen | 50 hydrogen | 25 helium | 1.5 argon
1.5 argon | 0 81 | | | | 12 | 25 helium | 50 nitrogen | 25 helium | 12 | 4 helium | 15 helium | 15 helium | 15 helium | 15 helium | 12 | 12 | 15 helium | | 0.20 | 0.20 | 0.20 | 0.22 | 0.22 | 0.32 | 0.20 | 4.00 | 0.20 | 6 | 0.33 | 0.20 | 0.20 | | 0.20 | | 0.20 | 3.00 | 0.25 | 0.25 | 0.25 | 0.25 | 0.20 | 0.20 | 0.25 | | wall-coated open tubular | wall-coated open tubular | | wall-coated open tubular | wall-coated open tubular | bonded phase | | 10% w/w on Diatoport S (80-100mesh) 10% w/w on Diatoport S (80-100mesh) | wall-coated open tubular
bonded phase | | oben | uedo | bonded phase | | wall-coated open tubular | | bonded phase | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase | bonded phase | wall-coated open tubular | | quartz glass | quartz glass | | | quartz glass | quartz glass | glass
quartz glass | יולו מפווימנוים | quartz glass
quartz glass | ı | 88 | quartz glass | quartz glass | | quartz glass | | quartz glass | glass | quartz | | ontene, 3-methyl-1-
0561 SE-30 | OV-1/SE-30
Me silicone | ermethrin, cis
2615 CHROMPAK CP Sil 5CB | srmethrin, trans
2637 CHROMPAK CP Sil 5CB | arylene
2814 SAC OV-1 | nenacetin OV-1/SE-30
1675 Me silicone | nehaceturic acid, trimetmyrs:
1847 OV-1
1862 OV-1 | SE-
Me | HP Me silicone
OV-1/SE-30 | | | | | | nenanthrene, 9-chloro | onanthrene-9-carboxaldenyde
2147 HP Me silicone | nenazine
1703 OV-1 | nenazopyridine
2217 Jaw Sci. SE-30 | nencyclidine
1860 Jaw Sci. SE-30 | nendimetrazine
1431 J&W Sci. SE-30 | 1265 Jaw Sci. SE-30 | | | 2109 Jaw Sci. SE-30 | | | , 2-methy1-2-
SE-30 quartz glass wall-coated open tubular 0.20 50 nitrogen standard | hyl-2-
SE-30 quartz glass wall-coated open tubular 0.20 50 nitrogen standard
hyl-1-
SE-30 quartz glass wall-coated open tubular 0.20 50 nitrogen standard | hyl-2-SE-30 quartz glass wall-coated open tubular 0.20 50 nitrogen standard hyl-1-SE-30 quartz glass wall-coated open tubular 0.20 50 nitrogen standard CV-1/SE-30 glass standard Me silicone quartz glass | hyl-2- SE-30 quartz glass wall-coated open tubular 0.20 50 nitrogen standard hyl-1- SE-30 quartz glass wall-coated open tubular 0.20 50 nitrogen standard OV-1/SE-30 glass We silicone quartz glass AK CP Sil 5CB quartz glass wall-coated open tubular 0.22 25 hydrogen standard AK CP Sil 5CB quartz glass | 2-methyl-2- 3-methyl-2- 3-methyl-2- 3-methyl-2- 3-methyl-2- 3-methyl-2- 3-methyl-1- 5E-30 quartz glass wall-coated open tubular ov-1/SE-30 quartz glass wall-coated open tubular in, cis in, trans CHROMPAK CP Sil 5CB quartz glass wall-coated open tubular 0.20 50 nitrogen standard standard 0.20 5 hydrogen standard 0.22 5 hydrogen standard 0.22 5 hydrogen standard 0.22 5 hydrogen standard | 2-methyl-2- 3-methyl-2- 3-methyl-2- SE-30 quartz glass wall-coated open tubular 0.20 50 nitrogen standard oitone OV-1/SE-30 glass wall-coated open tubular 0.20 50 nitrogen standard UP Me silicone quartz glass wall-coated open tubular 0.22 25 hydrogen standard in, cis chemometry coated open tubular 0.22 25 hydrogen standard in, trans SHROMPAK CP Sil 5CB quartz glass wall-coated open tubular 0.22 25 hydrogen standard SAC OV-1 quartz glass bonded phase 0.32 50 hydrogen standard | wall-coated open tubular 0.20 25 helium standard 0.22 25 hydrogen standard 0.32 26 hydrogen standard 0.32 50 hydrogen standard standard standard 0.20 25 helium standard | ethyl-2-
SE-30 quartz glass wall-coated open tubular 0.20 50 nitrogen standard ethyl-1-2-
SE-30 quartz glass wall-coated open tubular 0.20 50 nitrogen standard ne
SE-30 quartz glass wall-coated open tubular 0.20 25 hgrogen standard Me silicone trans quartz glass wall-coated open tubular 0.22 25 hydrogen standard OV-1/SE-30 glass wall-coated open tubular 0.22 25 hydrogen standard OV-1/SE-30 glass bonded phase 0.32 25 hydrogen standard OV-1/SE-30 glass bonded phase 0.32 25 helium standard OV-1/SE-30 glass conded phase 0.32 25 helium standard OV-1/SE-30 glass conded phase 0.20 25 helium standard OV-1 trimethylsilyl derivative 0.00 25 helium standard OV-1 trimethylsilyl derivative 0.00 25 helium standard OV-1 trimethylsilyl derivative 0.00 25 helium standard OV-1 trimethylsilyl derivative | wall-coated open tubular bonded phase 10% w/w on Diatoport S (80-100mesh) 10% w/w on Diatoport S (80-100mesh) wall-coated open tubular 0.20 55 helium standard 0.22 25 hydrogen standard 0.22 25 hydrogen standard 0.20 25 helium standard 0.20 25 helium standard 0.20 25 hitrogen standard 0.20 25 helium | wall-coated open tubular bonded phase 10% w/w on Diatoport S (80-100mesh) 10% w/w on Diatoport S (80-100mesh) wall-coated open tubular 10% w/w on Diatoport S (80-100mesh) 4.00 1.5 argon standard 3tandard 3tandard 3tandard 4.00 1.5 argon 3tandard 4.00 1.5 argon 3tandard 4.00 1.5 argon 3tandard 3tandard 4.00 1.5 argon | ass wall-coated open tubular 0.20 50 nitrogen standard ass wall-coated open tubular 0.20 50 nitrogen standard ass wall-coated open tubular 0.22 25 hydrogen standard ass wall-coated open tubular 0.22 25 hydrogen standard ass bonded phase 0.32 50 hydrogen standard ative 10% w/w on Diatoport S (80-100mesh) 4.00 1.5 argon standard ass wall-coated open tubular 0.20 25 helium standard ass wall-coated open tubular 0.20 50 nitrogen standard ass wall-coated open tubular 0.20 50 nitrogen standard ass wall-coated open tubular 0.20 25 helium tap water ass wall-coated open tubular 0.20 25 helium tap water ass wall-coated open tubular 0.33 25 helium standard | ### ### ### ### #### #### ############ | ### ### ############################## | ### ### ### ### ### #### #### ### ###### | ### ### ############################## | ### ### ############################## | ### ### ############################## | ### ### ############################## | ### ### ### #### ##################### | ### ### ############################## | ### ### #### ######################### | ### ### ### ### ### ### ### ### ### ## | ### ### ### ### ### ### ### ### ### ## | ### ### ############################## | | LIT
REF | 23 | 23 | 4 4 7 | 38
28 | 66 | 28 | 28 | 34 | 28 | 34 | 28 | 25 | 9
9
4 | | 5 | 34 | 9.6 | 5,4 | ი
ი
ი 4 | • | 7 | 28 | 28 | r | 28 | ო | 34 | 34 | 34 | 34 | |------------------------|--------------------------|-----------------------------|---------------------------|-------------------------------------|-----------|--------------|-----------------------------|----------------------------|-----------------------------|-------------------------|-----------------------------|-------------|---|-----------------|--------------------|-------------------------|----------------|-------------|---|-------------------------|------------------------|--------------|--------------------|----------------------------|---|---------------|-------------------------|-------------------------|-------------------------|----------------------------------| | SAMPLE TYPE | standard | standard | standard
standard | standard
standard | standard standard
standard | | | standard | | standard | standard
standard | 7 | stalldatu | standard | standard | o called a | standard | essential oil | standard | standard | standard | standard | | LEN CARRIER
(m) GAS | 15 helium | 15 helium | 25 helium | | .1 helium | 50 hydrogen | 50 hydrogen | ۰. | 50 hydrogen | 6. | 50 hydrogen | | 25 hydrogen
.9 | σ | ` | σ. | 50 hydrogen |) LO | 5 hydrogen
9 | σ | 'n | 50 hydrogen | 50 hydrogen | | on hydrogen | 50 helium | 6. | 6. | 6. | 6. | | ID LEN | 0.25] | 0.25 | 0.20 | | S. | 0.32 | 0.32 | .0 2 | 0.32 | .0 2 | | | 2.0 2. | ٠ | | .0 | 3 3 6 | | 0.31 2.02.0 | | | 0.32 | .32 | 4 | 32 | .30 | .0 2 | .0 2 | .0 2 | 2.0 2. | | - 1 1 | | | 0 | 00-120 mesh) | | 0 | 0 | (80-100 mesh) 2 | 0 | (80-100 mesh) 2 | 0 | | (80-100 mesh) 2 | (80-100 meah) | 7 (1190111 001 001 | (80-100 mesh) 2 | | • | (80~100 mesh) |
(80-100 meah) | 7 (1169111) | 0 | 0 | • | Þ | 0 | (80-100 mesh) 2 | (80-100 mesh) 2 | (80-100 mesh) 2 | (80-100 mesh) 2 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | | 15% w/w on Gas-Chrom Q bonded phase | | bonded phase | bonded phase | 3% on Chromosorb W HMDS | bonded phase | 3% on Chromosorb W HMDS | bonded phase | | bonded phase
3% on Chromosorb W HMDS | 5 | | 3% on Chromosorb W HMDS | honded the | | bonded phase
3% on Chromosorb W HMDS | 3% on Chromosoph W HMDS | i crocomorno no | bonded phase | bonded phase | | bonded phase | bonded phase | 3% on Chromosorb W HMDS | | COLUMN MATERIAL | quartz glass | quartz glass | glass
quartz glass | quartz glass | 988 | quartz glass | quartz glass | glass | quartz glass | glass | martz dlass | ,
, | glass
glass | ر م | 9.445 | glass | marts diaga | , | glass
qlass | 0
0
0 | 91 ass | quartz glass | quartz glass | , | quartz glass | quartz glass | glass | glass | glass | glass | | N STATIONARY N PHASE | i. SE-30 | i. se-30 | OV-1/SE-30
Me ailicone | SE-30
OV-1 | SE-30 | 0V-1 | 2,3,5-trichloro
SAC OV-1 | 2, 3, 5-trimethyl
SE-30 | 2,3,6-trichloro
SAC OV-1 | nethyl
SE-30 | Z,4,5-trichloro
SaC OV-1 | OV1-1/SE-54 | OV1-1/SE-54
SE-30 | 2,4,6-trichloro | 2,4,6-trimethyl | SE-30 | shloro
OV-1 | OV1-1/SE-54 | OV1-1/SE-54
SE-30 | 4-dimethyl | 4-dimethyl (m-xylenol) | ₹ | OV-1
OV-1/SE-30 | 2,5-dimethyl (2,5-xylenol) | SAC $0V-1$
2. $6-d^{\dagger}-t-butvl-methvl$ | ov-1 | SE-30 | SE-30 | SE-30 | Z, e-dimethoxy-4-propyi
SE-30 | | COLUMN | dine
Jaw Sci. | razine
J&W Sci | bitone | SAC | | SAC | 2,3,5-t
SAC | 2, 3, 5-1 | 2,3,6-t
SAC | 2,3-dimethyl
SE- | 2,4,5-t
SAC | HP | HP | 2,4,6-t | 2,4,6-t | • | 2,4-dichloro | HP | НР | 2,4-din | 2,4-din | SAC OV. | SAC | 2,5-din | SAC
2.6-di- | Hall OV- | SE-3 | 17 O OTH | 2, v - 0.1 | , o - aıı | | LTP
INDEX | pheniramine
1779 J&W | phenmetrazine
1409 J&W S | e
H | phenol
0926
0959 | | | | | | | phenol, | | 1355 | | _ | | phenol, | | 1164 | | | | | | 1125 | | | | | phenol,
1624 | | LIT
REF | 0 W
0 W W W W 44 | 34 | 28 | 33 | 28 | 34 | 46 | 34 | 34 | 34 | 4 | 34 | 23 | 78 | 23 | 49 | 28 | 28 | 34 | 34 | 34 | 39
34 | 28
34 | 34 | |-----------------------------------|--|------------------------------------|------------------------------|----------------------------|--|---------------------------------------|--------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|---------------------------------------|------------------------------|----------------------------|--|---|------------------|---|---------------------------------------|---------------------------------------|---------------------------------------|---|---|---------------------------------------| | SAMPLE TYPE | standard
standard
standard
standard
standard | standard | standard | standard | standard | standard | food | standard standard
standard | standard
standard | standard | | ID LEN CARRIER
(mm) (m) GAS | 0.30 24 helium
0.30 25 helium
0.20 50 helium
0.30 30 helium
0.32 50 hydrogen
2.0 2.9 | 2.0 2.9 | 0.32 50 hydrogen | 3.18 3.1 helium | .32 | 2.0 2.9 | 0.28 80 nitrogen | 2.0 2.9 | 2.0 2.9 | 2.0 2.9 | | 2.0 2.9 | 15 | | 5 2 nitrogen | 0.25 15 helium | 0.32 50 hydrogen | 0.32 50 hydrogen | 2.0 2.9 | 2.0 2.9 | 2.0 2.9 | 3.18 3.1 helium
2.0 2.9 | 0.32 50 hydrogen
2.0 2.9 | 2.0 2.9 | | COLUMN TYPE | wall-coated open tubular wall-coated open tubular wall-coated open tubular wall-coated open tubular bonded phase 3% on Chromosorb W HMDS (80-100 mesh) | on Chromosorb W HMDS (80-100 mesh) | bonded phase | Supelcoport (100-200 mesh) | | 3% on Chromosorb W HMDS (80-100 mesh) | wall-coated open tubular | 3% on Chromosorb W HMDS (80-100 mesh) | 3% on Chromosorb W HMDS (80-100 mesh) | 3% on Chromosorb W HMDS (80-100 mesh) | | 3% on Chromosorb W HMDS (80-100 mesh) | ated open tubular | onded phase
onded phase | 3% w/w on Chromosorb W HP (80-100mesh) | bonded phase | bonded phase | bonded phase | 3% on Chromosorb W HMDS (80-100 mesh) | 3% on Chromosorb W HMDS (80-100 mesh) | 3% on Chromosorb W HMDS (80-100 mesh) | Supelcoport (100-200 mesh)
3% on Chromosorb W HMDS (80-100 mesh) | bonded phase
3% on Chromosorb W HMDS (80-100 mesh) | 3% on Chromosorb W HMDS (80-100 mesh) | | COLUMN MATERIAL | glass
glass
quartz glass
glass
quartz glass | glass | quartz glass | stainless steel | quartz glass | ro (dinoseb)
quartz glass | | quartz glass | ro (premerye)
quartz glass | quartz glass | enol)
quartz glass | glass | glass | glass | stainless steel
glass | quartz glass
glass | glass | | COLUMN STATIONARY
ORIGIN PHASE | othyl
0V-1
0V-1
0V-1
0V-1
0F-30 | 2-amino SE-30 | 2-amino-4-chloro
SAC OV-1 | 2-bromo
HP SE-30 | 2-chloro
SAC OV-1
2-:achronul-5-methvl | SE-30 | 2-methoxy
OV-101 | 2-methoxy-4-propeny1
SE-30 | -methoxy | 2-methyl (o-cresol)
SE-30 | 2-methyl-4, 6-dinitro
OV-1/SE-30 | 2-nitro
SE-30 | ec-but
Sci. | SAC OV-1
SAC OV-1 | PEC SE-30 | 2-sec-buty1-4,0-dinitro (premer
DB-1 quartz gl | | 3,4-dimethyl (3,4-xylenol)
SAC OV-1 quar | 3,5-dichloro
SE-30 | 3,5-dimethyl
SE-30 | 3-amino
SE-30 | 3-bromo
HP SE-30
SE-30 | 3-chloro
SAC OV-1
SE-30 | 3-ethyl
SE-30 | | LTP | ı | | _ | | | pneno1,
1271 | phenol,
1077 | phenol,
1367 | phenol,
1392 | phenol,
1035 | phenol,
1617 | phenol,
1095 | phenol,
1695 | 1771 | 1802 | phenol,
1800 | phenol,
1589 | phenol,
1167 | phenol,
1391 | phenol,
1163 | phenol,
1335 | phenol,
1262
1270 | phenol,
1173
1194 | phenol,
1160 | | LIT
REF | 34 | е
6 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 28
34 | 28 | 34 | 34 | 39
34 | 34 | 6 80 80
4 80 80 | 8 2 2
8 5 4 | 55 | 23 | 23 | 46 | 23 | 23 | |---------------------|---------------------------------------|----------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|---|-------------------------------|---------------------------------------|---------------------------------------|---|---------------------------------------|---|--|---------------------------|-----------------------------------|---|-------------------------------|--------------------------|-----------------------------------| | IER SAMPLE TYPE | standard | um standard | ım standard
standard | ogen standard
standard | ogen standard | standard | standard | um standard
standard | standard | standard
yen standard
ogen standard | ogen standard
ogen standard
standard | standard
ogen standard | ım standard | ım standard | ogen food | ım standard | ım standard | | GAS
GAS | • | helium | 0 | 6 | 6 | | o. | • | o. | belium | hydrogen | 50 hydrogen | • | o, | helium | _ |)
hydrogen
hydrogen |) hydrogen
5 hydrogen | 5 hydrogen | 5 helium | 5 helium |) nitrogen | helium | helium | | LEN (m) | 2.9 | 8 3.1 | 2. | 8 | 2 | 2.9 | 2. | 2.9 | 2. | 8 3.1
2.9 | 2 50 2.9 | | 2.9 | 2. | 8 3.1
2.9 | 2.9 | 2.9
1 25
1 25 | 2 50
1 25 | 8 | - | 1 | 8 80 | 5 15 | 5 15 | | (mm) | 2.0 | 3.18 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 3.18 | 0.32 | 0.32 | 2.0 | 2.0 | 3.18 | 2.0 | 2.0
0.31
0.31 | 0.32 | 0.31 | 0.25 | 0.25 | 0.28 | 0.25 | 0.25 | | COLUMN TYPE | 3% on Chromogorb W HMDS (80-100 mesh) | Supelcoport (100-200 mesh) | 3% on Chromosorb W HMDS (80-100 mesh) | 3% on Chromosorb W HWDS (80-100 mesh) | Supelcoport (100-200 mesh) 3% on Chromosorb W HMDS (80-100 mesh) | bonded phase
3% on Chromosorb W HMDS (80-100 mesh) | bonded phase | 3% on Chromosorb W HMDS (80-100 mesh) | 3% on Chromosorb W HMDS (80-100 mesh) | Supelcoport (100-200 mesh)
3% on Chromosorb W HMDS (80-100 mesh) | 3% on Chromosorb W HMDS (80-100 mesh) | 3% on Chromosorb W HMDS (80-100 mesh)
bonded phase
bonded phase | bonded phase
bonded phase | bonded phase | wall-coated open tubular | | COLUMN MATERIAL | glass | stainless steel | glass | glass | glass | glass | /
glass | glass | glass | stainless steel
glass | quartz glass
glass | quartz glass | glass | glass | stainless steel
glass | glass | glass
glass
glass | guartz glass
glass
glass | glass
glass | quartz glass | -30 quartz glass | glass | quartz glass | quartz glass | | STATIONARY
PHASE | Y
SE-30 | SE-30 | > ~ | (m-cresol)
SE-30 | 4-chloro
SE-30 | SE-30 | -2, 6-dimethoxy
SE-30 | -2-methoxy
SE-30 | SE-30 | SE-30
SE-30 | OV-1
SE-30 | 4-cnioro-3-metnyi
SAC OV-1 | SE-30 | Y
SE-30 | SE-30
SE-30 | SE-30 | (p-cresol)
SE-30
OV1-1/SE-54
OV1-1/SE-54 | oro
OV-1
OV1-1/SE-54
OV-1/SE-30 | OV-1/SE-30
OV1-1/SE-54 | SE-30 | | OV-101 | SE-30 | SE-30 | | COLUMN | | 3~10d0
BP | | ď | m | 4 | 4-acetyl | 4-acetyl | | | | 4-chloro
SAC | |
 | | | pentachloro
SAC OV
HP OV | HP | phenoxypenzamide
2205 J&W Sci. | pnenternine
1138 J&W Sci. SE
phenylacetaldehyda | Transparent and a me Louisian | 1287 Jaw Sci. SE-30 | pnenyicoloxamune
1915 J&W Sci. | | LTP
INDEX | phenol,
1368 | phenol,
1369 | phenol,
1211 | phenol,
1065 | phenol,
1283 | phenol,
1578 | phenol,
1849 | phenol,
1531 | phenol,
1314 | phenol,
1256
1274 | pnenol,
1171
1192 | pheno1,
1260 | phenol,
1162 | phenol,
1334 | phenol,
1343
1398 | phenol,
1210 | phenol,
1059
1075
1078 | phenol,
1715
1726
1749 | 1754 | phenoxy
2205 | phencernine
1138 J&W | 1019 | 1287 | pneny
1915 | | LIT
REF | 23 | 49 | 41 | 41 | 41 | 49 | 41 | 41 | 49 | 49 | 4. 4.
2. 0. | 49 | 49 | 49 | 49 | 49 | r. | 49 | | 47 | 47 | 53 | 49 | 49 | н | 28 | 4 | 7 | 41 | | |------------------------|--------------------------|---|--|---|-----------------------------------|--|---|---|---|---|--|------------------------------------|--|---|------------------------------|--|----------------------|----------------|---|--------------------------|-----------------------|------------------------------------|----------------------|--|--|------------------------------|---|--|--|--| | SAMPLE TYPE | standard standard
standard | standard | standard | standard | standard | standard | standard | | standard | standard
standard | standard | standard
standard | | | LEN CARRIER
(m) GAS | 15 helium helium
15 helium | 15 helium | | 5 | | 15 helium | 2 mitroden | 15 helium | Z isomer)
4 helium | 25 helium | 25 helium | 1somets)
2 nitrogen | 15 helium | 15 helium | 4 helium | | 15 helium
4 helium | 4 helium | 15 helium
4 helium | | | I QI (mm) | 0.25 | 0.25 | 0.32 | 0.32 | 0.32 | 0.25 | 0.32 | 0.32 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | tophos | 0.25 | 0.25 | LC) | | | 0.20 | | | | 0.25 | 3.00 | 0.32 | 0.32
3.00 | 3.00 | 0.32
3.00 | | | COLUMN TYPE | wall-coated open tubular | ester (dyfonate, fonofos)
bonded phase | ester (Sarin)
wall-coated open tubular | phosphonofuloridic acid, methyl-, 2-methylcylcohexyl ester
1211 Jaw SCI DB-1 quartz glass wall-coated open tubular | ubular | yl o-methyl phenyl ester (phosvel)
bonded phase | wall-coated open tubular | <pre>ver (rabun) wall-coated open tubular cotton (orthons scarbs)</pre> | bonded phase | o-methyl isopropyl ester (zytron)
bonded phase | (methamidophos, Monitor, Tamaron) honded phase | dimethyl protect (phosdrin, alpha) | dimethyl ester (phosdrin, beta) bonded phase | dimethyl ester (azodrin, monocro | ester (gardona) | <pre>dimethyl ester (dibrom, naled) bonded phase</pre> | lorvos) | (manuscr an) : | 2-chloro-1-(2,4,5-trichlorophenyl)ethenyl dimethyl ester (tetrachlorvinphos
0V-1 | Me silicone quartz glass | | Chromosorb W HP (80-100mesh) | ester (phosphamudon | 2-chloro-2-diethylcarbamoyl-1-methylvinyi dimethyi ester (phosphamidon
DB-1 quartz glass bonded phase | 3% w/w on Chromosorb W HP (80-100mesh) | | wall-coated open tubular 3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular
3% w/w on Chromosorb W HP (80-100mesh) | | | MATERIAL | glass | anyl ethy
glass | nethyleth
glass | sthylcyl
Jass | ois(1-me
glass | lichlorop
glass | | glass | glass | lorophenyl
glass | Ä | yen-2-yl) | yrass
pen-2-yl
alass | ylcarban | 5-trichl | Ioroethy
glass | _ | glass | ichlorop | glass | glass | glass | arbamoyı-
glass | rbamoyl-
glass | ter | glass | glass | | glass | | | COLUMN | quartz | o-ethyl s-phenyl ethyl
quartz glass | /l-, l-m
quartz | 71-, 2-m
quartz | , S-[2-()
quartz | no-2,5-d
quartz | quartz | quartz | N | o-2,4-dichl
quartz | -dimethy | rboxypro | quartz
rboxypro | -2- (meth | -1-(2,4,
quartz | 2,2-dich | | quartz | 2,4,5-tr
glass | quartz
2 4-dich | quartz | ני | nethylca
quartz | ıethylca
quartz | exyl) es
glass | uartz | | estër
glass | uartz
lass | | | STATIONARY
PHASE | | cacid, o-ethy
DB-1 | phosphonofluoridic acid, methyl-, 1-methylethyl 0792 J&W SCI DB-1 quartz glass | ic acid, meth
DB-1 | acid, methyl-, S-[2-(DB-1 | acid, o-4-bromo-2,5-c
DB-1 quartz | cid, morpholino-, dimethyl
DB-1 quartz glass | phosphoramidocyanidic acid, dimethyl-
1078 J&W SCI DB-1 quartz | phosphoramidothioic acid, n-acelyi, 1/1440 guart: | phosphoramidothioic acid, o-2
1942 DB-1 | phosphoramidothioic acid, 0,8-dimethy | (1-methoxycarboxypro | (1-methoxycarboxypropen-2-yl) | ED -1-methyl-2-(methylcarbamoyl)vinyl, DD-1 | (Z)-2-chloro-1-(2,4,
DB-1 | 1,2-dibromo-2,2-dichloroethyl
DR-1 quartz glass | 2,2-dichlorovinyl di | SE-30
DB-1 | 2-chloro-1-(
OV-1 | Me silicone | Me silicone | 2-chloro-2-diethyl
SE-30 quait; | 2-chloro-2-d
DB-1 | 2-chloro-2-d
DB-1 | tri(2-ethylhexyl) ester
OV-1
glass | ov-1 | DB-1
OV-1 | tricresyl es
OV-1 | triethyl ester
DB-1
OV-1 | | | COLUMN | nidol
J&W Sci. | phosphonodithioic acid, 1736 DB-1 | ofluoridi
J&W SCI | nofuloridi
J&W SCI | phosphonothioic a
1664 J&W SCI | phosphonothioic acid,
2495 DB-1 | phosphoramidic acid,
1296 J&W SCI DB-1 | amidocyar
J&W SCI | amidothic | amidothic | amidothic | phosphoric acid, | ic acid, | ic acid, | ic acid, | phosphoric acid, | ic acid, | 74
C | phosphoric acid, 2084 | HP 52.2 | HP HP | ric acid,
PEC | | ric acid, | phosphoric acid, 2463 | phosphoric actu,
1614 SAC | JEW SCI | phosphoric acid,
2695 | ric acid,
Jaw SCI | | | LIP
INDEX | phenyramidol
1932 J&W | phosphon
1736 | phosphon
0792 | phosphon
1211 | phosphon
1664 | phosphon
2495 | phosphor
1296 | phosphor
1078 | phosphor
1440 | phosphor | phosphor | phosphor | 1392
phosphoric | phosphoric | phosphoric | phosphor | 0 | 1220 | phosphor
2084 | 2112 | phosphoric
2053 HP | phosphoric
1850 PEC | phosphoric
1767 | phosphoric
1837 | phosphor
2463 | phosphor
1614 | 1616 | phosphor
2695 | phosphoric
1091 Jaw
1109 | | | LIT | | - | - | | - | - | H | - | 7 | 9 | 49 | 28 | ₹ . | ٠, | 4 | ٦; | 28 | : | ٦٠ | η
Δ. υ | 28 | 47 | 49 | r. | 4 6 | - | 4 ; | 4 | 49 | 53 | יין ני
רין ני | 3 | |---------------------|----------------------|----------------------|----------------------|--------------------------|-----------------------|-------------------|--|-----------------------------|---------------------------------|---|---|--|---|-------------------------|--|------------------------|------------------------------|------------------------------|------------------------|------------------------|------|-------------|----------|---|--------------|----------------------|-----------------|--|-------------------|--|---|---| | SAMPLE TYPE | standard | standard | standard | standard
) | | standard
standard | | standard | standard | | | standard | atandard | | standard | standard | scandard | standard | standard | standard | | | LEN CARRIER (m) GAS | 4 | 4 helium | 4 | 4 helium | 4 helium | 15 helium | 15 | phos
50 | | | .25 15 helium
(azinphos-methyl) | 4 helium | 50 hydrogen
25 helium | | 4 helium | 2 nitrogen | 20 2 | 25 | | | 15 | 4 helium | ם מייים מייים | 7 | 25 15 helium star | N | 4 helium
2 nitrogen | | | (mm) | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 0.25 | 0.25 | (azin
0.32 | 07.0 | 20.0 | _ | 3.00 | 0.20 | | 3.00 | ī. | 0.32 | 0.20 | 0.25 | ស | 0.25 | 3.00 | 6 | 11) | 0.25 | . 2 | 3.00
5.00 |) | | TYPE | W HP (80-100mesh) | | W HP (80-100mesh) | W HP (80-100mesh) | Ruelene) | ester (disyston sulfoxide) | <pre>-y1)methy1] ester</pre> | up (80-100moah) | ä |)
-yl)methyl] ester | W HP (80-100mesh) | | hio | W HP (80-100mesh) | W HP (80-100mesh) | i | | | er (dimethoate)
W HP (80-100mesh) | | W HP (80-100mesh) | | hyl ester (delnav | methvilo O-dimeth | | W HP (80-100mesh) 3.00
W HP (80-100mesh) 3.00
W HP (80-100mesh) 5 | | | COLUMN T | 3% w/w on Chromosorb | 3% w/w on Chromosorb | 3% w/w on Chromosorb | 3% w/w on Chromogorb | 3% w/w on Chromosorb | Chromosorb | W/w on Chromosorb | 3% w/w on Chromosorb | | methyl methyl (crufomate, bonded phase | sulfinyl) methyl) ester (dis | S-[(4-oxo-1,2,3-benzotriazin-3(4H)-y1)methyl]; glass | (phorate) | (thimet) | glass bonded phase
S-[(4-oxo-1,2,3-benzotriazin-3(4H) | 3% w/w on Chromosorb W | bonded phase |
thoxyethyl ester (malathion) | 3% w/w on Chromosorb W | 3% w/w on Chromogorb W | p v | • | | S-{Z-(methylamino)-Z-oxoethyl] ester
calass 3% w/w on Chromosorb W | bonded phase | 3% w/w on Chromosorb | | 1) 0,0,0',0'-tetramethyl ester (delnav | C F | quartz glass 3% W/w on Chromosorb W HP | 38 w/w on Chromosorb W HP 38 w/w on Chromosorb W HP | | | COLUMN MATERIAL | Ψ | ester
glass | ester
glass | er
glass | ester
qlass | ester
glass | tris(2,3-dichloropropyl) ester
OV-1 qlass | | ester
3 | 4-tert-butyl-2chlorophenyl metl
8-1 quartz glass | o,o-diethyl s-(ethylsulfi)
martz glass | O, O-diethyl S-[(4-oxo-1, guartz glass | cone quartz grass 0,0-diethyl S-ethylthiomethyl ester | 02 | quartz glass
O, O-dimethyl S-[(4-oxo-1, | | quartz glass
quartz qlass | 02 | glass | grass
quartz qlass | | | | OO-dimethyi S-{Z-(methylo
quartz qlass | | | glass | ٥ | ۳. | quartz glass | glass
glass
quartz glass | | | STATIONARY | triisobutyl
OV-1 | щ | - | trioctyl ester OV-1 | triphenyl es
OV-1 | tripropyl es | tris(2,3-dic | tris(2-chloroethyl)
OV-1 | tris(butoxyethyl)
OV-1 glass | | c acid o,o-di | acid,
V-1 | ᆏ | | | 0V-1 | OV-1
Me silicone | | OV-1 | SE-30 | ov-1 | Me silicone | | c acid, 00-dii
SE-30 | DB-1 | 0V-1 | OV-1/SE-30 | 3,8, |) -s | | | | | | ll . | ซ | | phosphoric acid,
2445 | phosphoric acid, 2363 | phosphoric acid, | phosphoric acid, 2307 | | phosphoric acid,
2363 | phosphoroamidate, | orodithioi | Ö | phosphorodithioic acid, | phosphorodithioic acid, | 1688 DB-1
phosphorodithioic acid, | 2430 | 2464 SAC
2507 HP | 2 | 1900 | 1917 PEC | | 1930 HP | 1938 | phosphorodithioic
1690 PEC | 1707 | 1720 | 1725
1733 UD | ž | 1714 DB-1 | 2092 PEC | 2255 0V-1 2310 PEC SE-30 | | | LIT | 49 | 49 | 49 | 49 | | 49 | 49 | 49 | 49 | 49 | • | 1, | 49 | 50 | 47 | ć | 87 | 53 | 53 | , | ო ო | n | 53 | | 28 | ₹ 9 | 43 | ; | * | r | ₽ - | 28 | 53 | 7)
7' | - | 49 | |---------------------|----------------------|--------------------------|--------------------------------------|---|-------------------------------------|---|---------------------|---|--------------------------------------|---|--|--|--------------|---------------------------------|------------------------------|---|---|---------------------------|---|---------------------------|------------------------|-------------------------------|-------------------|----------------------------|--------------|-------------|----------------------|-----------------|-------------------|------------------------------|---------------------|--------------|-----------------|--------------------------|--------------------|--------------| | SAMPLE TYPE | standard | standard | standard | standard | cide) | standard | standard | Btandard | standard | standard | 77 17 17 17 17 17 17 17 17 17 17 17 17 1 | standard
one) | | standard | standard | | standard | standard | standard | , | standard | | standard | standard | standard | standard | standard
standard | standard | 40 | scandard | standard | standard | standard | Scandard | standard | standard | | LEN CARRIER (m) GAS | | 15 helium | 15 helium | dioxathion)
0.25 15 helium | | 15 helium | 15 helium | | (gutnion)
15 helium | 15 helium | 16 14.1 | | | z nicrogen | 25 helium | (coumaphos) | on nyarogen | 2 nitrogen | 2 nitrogen | i | 50 helium
50 helium | 3 | 2 nitrogen | 4 helium | 20 | | 25.5 | 4 | | (u | 4 helium | 50 | 2 nitrogen | } ' | 4 helium | 15 helium | | OI (mm) | 0.25 | 0.25 | 0.25 | 0.25 | -dimethyl | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 6 | hyl e | 0.25 | inhoe. | 0.20 | | 0.32 | . 5 | ут)
5 | | 0.30 | | ល | | 0 | 6 | 0.20 | | | (diazinon) | | | 2 5 | | 3.00 | 0.25 | | Ю II | | | ; | ester (deinav 1, | ò | (torak) | o o-diethul ester (| | o, o-almetnyl | (trithion) | (methyl trithion) | methyl o, o-diethyl ester | | W MF (80-100mesn) 5 Z nic | Tage (breen | yran-7-yl) ester | 2 | HP (80-100mesh) | (chlorpyritos methyl)
W HP (80-100mesh) | | | (iodofenphos) | W HP (80-100mesh) | W HP (80-100mesh) | • | | | HP (80-100mesh) | | ester | HP (80-100mesh) | | HP (80-100mesh) | | HP (80-100mesh) | | | COLUMN TYPE | <u>B</u> | ester (imidan)
shase | ecnoprophos) | | -2-oxol, 3, 4-thiadiazol-3-ylmethyl | se
iethyl ester | | | -3-7тшө | ester (| ester | bonded phase | 0 1 | ass 3% W/w on Chromosoff W HP 6 | Yt o, carmeti | thyl 0-(3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl) | quartz glass
hvl S-2-(ethvlthio)ethvl ester (disulfoton) | 38 W/w on Chromosorb W HP | _ | ethyl ester, | 99 | ester | orb | orb | 89 | į, | D
Q | on Chromosorb W | (parathion-ethyl) | -methylethyl)-4-pyrimidinyl] | w/w on Chromosorb W | | romosorb W | orophenyl ester (ronnel) | on Chromosorb W HP | 89
6 | | | ethylthioethyl ester | phthallmidomethyl este | u | 1 o,o,o',o'-tetramethyi
bonded phase | y-2-0x01, 3, 4- | ass bonded phase thalimidoethyl o,o-diethyl | ass bonded phase | bonded phase | 2, 3-benzocriazi
bonded phase | <pre>lthiomethyl o,o-diethyl ass bonded phase</pre> | >- | bonded phase | bonded phase | 38 W/W on | . py . - | 1-methyl-2-ox | bonded pna
io)ethvleste | 38 W/W on | 5,6-trichloro-2-pyridyl ester
ass 3% w/w on Chromosork | chlorophenyl) 00-dimethyl | bonded phase | 0,0-di | 3% w/w on | 9 89
3 80 | bonded phase | honda hona | | 38 W/W | ester | - (1-methyleth | 38 W/W on | bonded phase | 3% w/w on Ch | oropheny | 3% W/W on | bonded phase | | JMN MATERIAL | 8-2
z 91 | glass | ropyı
ass | -dioxane-2,3-diy1
quartz qlass | dro-5-methoxy | cz glass
-1-phthalimi | | | dihydro-4-oxo-1,2
quartz glass | lorophenylthlome
quartz qlass | chenylthiome | quartz grass
8-6-chloro-2.3-dihvdro-2 | z glass | z glass | nino-o-meciny.
z glass |)- (3-chloro- | z glass
3-2-(ethvith: | z glass | ė, β | , 5-dichloropl | z glass | co-4-iodophenyl | z glass | -4-nitrophenyi
3 | z glass | 7 | z glass | , | -4-nitrophenyl | -[6-methyl-2-(1 | m m | | |)-2,4,5-trichl | | z glass | | NARY
GECOLUMN | o, o-diethyl g | o,o-dimethyi
quartz | ethyi
q | s, s'-p-dioxane-
quartz ql | a-2, 3-dihydro-5 | quartz gl
s-2-chloro-1-ph | quartz gl | quartz | s-3,4-dihydro-4
quartz gl | <pre>8-4-chloropheny quartz ql</pre> | a-4-chloropheny | quar
9-6-chloro | quartz | SE-30 quartz gl | cone quari | acid, 0,0-diethyl | quar
0.0-diethvl | quartz | O,O-dimethyl O
quartz | 0- (4-bromo-2,5-di | quartz | quarus 91
-5,5-dichloro-4- | quartz | OU-dietnyl U-4-ni
glass | | SE-30 glass | i
silicone quartz | | 00-diethyl 0-4 | at. | -30 glass
qlass | quartz | quartz | 00-dimethyl 0-2,4 | glass
-30 glass | | | STATIONARY
PHASE | υD | c acid,
DB-1 | c acid,
DB-1 | c acid,
DB-1 | c acid, | DB-1
c acid, | DB-1 | DB-1 | c acid,
DB-1 | cacid,
DB-1 | c acid, | UB-1
c acid. | DB-1 | SE-30 | Acia, U,z-are
Me silicone | acid, 0, | 0V-1
acid. 0. | 0 | acid, 0,
SE-30 | | 0V-1 | | ~ | acid, 00
0V-1 | | OV-1/SE | Me sili | | acid, 00-die | acid, 00 | OV-1/SE-30
OV-1 | 00-1 | SE-30 | | OV-1
OV-1/SE-30 | DB-1 | | COLUMN | phosphorodithioi | phosphorodithioi
2375 | phosphorodithioic acid,
1629 DB-1 | phosphorodíthíoíc acid,
1142 DB-1 | phosphorodithioic acid, | 2012 DB-1
phosphorodithioic acid, | 2570 DB-1 | 101111111111111111111111111111111111111 | phosphorodithioic acid,
2462 DB-1 | phosphorodithioic acid,
2277 DB-1 | phosphorodithioic acid, | 218/
phosphorodithioic acid. | | | | ioic | 2654 SAC | | D | ioic | Hall | ย | | phosphorothicie | SAC | | HP | | υ | ט | | SAC | PEC | rothioic | | | | LTP | phospho
1783 | phospho.
2375 | phospho
1629 | phospho
1142 | oudsoud | 2012
phospho | 2570 | 2551
2551 | phospho
2462 | phospho
2277 | phospho | 2187 | 2476 | 2488 | phospho
1919 | phospho | 2654 | 1776 | phosphorothioi | phospho | 1971 | phosphorothioi | 2150 | phospho
1935 | 1941 | 1942 | 1981 | 2040 | phosphorothioi | phosphorothici | 1758 | 1766 | 1769 | oudsoud | 1880 | 1897 | | LIT | | 40. | - | 49 | 28 | 4.4 | 27 | 27 | Ħ | 27 | 27 | п | 27 | 27 | 27 | 44 | 28 | 28
28 | 3 ⊶ | 27 | - | • | 4 | - | • | m | w 4 | · [| 27 | |-------------------------|---|----------------------|--|--------------------------|-----------------------|----------------------|-------------------------------|--------------------------|---------------------------|--------------------------|--------------------------------|---------------------------|--------------------------|----------------------------|-----------------|-------------------------|------|------------------------------|--------------|--------------------------|---------------------------|---------------------------------------|------------------------|---------------------------|-------------|--------------|---------------------------|---------------------------|--------------------------| | SAMPLE TYPE | standard | standard
standard | grandard | standard | standard | standard
standard | standard tap water | atan | standard | | standard | standard | 4 4 4 . | standard
standard | standard | | | essential oil
standard | | | | LEN CARRIER
(m) GAS | 4 helium | 15 helium | | | 50 hydrogen | 4 helium | 42 helium | 42 helium | 4 helium | 42 helium | 42 helium | 4 helium | 42 helium | 42 helium | 42 helium | 25 helium | | 50 hydrogen
50 hydrogen | | 42 helium | 4 helium | | | 4 belium | | 50 helium | nerium | 4 helium | |
| 11D (mm) | 3.00 | 0.25 | 3.00 | 0.25 | 0.32 | 3.00 | 0.30 | 0.30 | 3.00 | 0.30 | 0:30 | 3.00 | 0.30 | 0.30 | 0.30 | | 0.32 | 0.32 | 3.00 | 0.30 | 3.00 | ć | 3.00 | 3.00 |)
)
! | 0.30 | 0.30 | 3.00 | 0.30 | | | (80-100mesh) | | 1)
(80-100mesh) | (u | | (80-100mesh) | | | (80-100mesh) | | | (80-100mesh) | | | | | | | (80-100mesh) | | (80-100mesh) | 1001 | | (80-100mesh) | | | | (80-100mesh) | | | COLUMN TYPE | ester (parathion-methyl)
3% w/w on Chromosorb W HP | bonded phase | ester (demeton-S-methy | dyl ester (dursba
ase | bonded phase | romosorb W HP | wall-coated open tubular | wall-coated open tubular | 3% w/w on Chromosorb W HP | wall-coated open tubular | wall-coated open tubular | 3% w/w on Chromosorb W HP | wall-coated open tubular | wall-coated open tubular | | • | | bonded phase
bonded phase | ىم | wall-coated open tubular | 3% w/w on Chromosorb W HP | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | W/W ON CHICHOSOLD W DE | 3% w/w on Chromosorb W HP | | bonded phase | bollded pliabe | 3% w/w on Chromosorb W HP | wall-coated open tubular | | COLUMN MATERIAL | 1 1 | Çi i | licone quartz glass
S-2-ethylthioethyl 00-dimethyl
glass | -3,
g | ester
quartz qlass | | er
glass | er
glass | ester
glass | glass | glass | cyl ester
glass | glass | er
glass | ester
glass |) ester | Б, | quartz glass
martz glass | ภ | glass | ס | | glass | glass | | | 5 | glass | glass
glass | | N STATIONARY
N PHASE | ige : | | acid, | | butyl benzyl es | OV-1/SE-30
OV-1 | butyl ethyl ester
SE-30 gl | hexyl est
10 | | nonyl est
30 | butyl octyl ester
SE-30 gla | nexyltr
 | eat | decyl octyl ester SE-30 al | decyl pentyl es | di (2-ethylhexyl) ester | ov-1 | 00-1 | | SE-30 | ov-1 | diallyl ester | 3-30 | dibenzyl ester | 1 ester | 0V-1 | /SE-30 | OV-1 | | | × | orothioi | | 1905 HP
phosphorothioic | orothioi | phthalic acid, | | phthalic acid,
1768 | phthalic acid,
2124 | Ö | | | υ | υ | phthalic acid, | ic acid, | ic acid, | | 2505 SAC | | | ב
ב | phthalic acid, | 1698 | phthalic acid, 2690 | ÷ | 1903 Hall | 1911 Hall | 1924 | 1938
1940 | | LIT
REF | 55
55 | 27 | ਜਜ | 27 | 27 | 4.1 | 28 | ne | co r | n | 4 - | 27 | 2.7 | 2.7 | 27 | 27 | -1 | 2.7 | 27 | 4 | m | m r | ? | - ! | 55 | 1 7 | 1 | 4 | 27 | • | 27 | 1 | |----------------------------|----------------------------|--------------------------|---|--------------------------|--------------------------|---------------------------|-----------------------|------------------------------|--------------|--|------------|--------------|--------------------------|----------------------|----------------|--------------------------|---------------------------|--------------------------|-------------|---------------------------|-------|---------------|---------------------------|-----------------|--------------|--------------------------|---------------------------|----------------------------------|--------------------------|-----------------|--------------------------|---------------------------| | SAMPLE TYPE | standard
standard | standard | standard
standard | standard | standard | standard
standard | standard | standard | standard | essential oil | standard | standard | standard | atandard | standard | standard | standard | standard | standard | scandard | | essential oil | standard | standard | standard | stalldatu | standard | standard | standard | • | standard
standard | standard | | LEN CARRIER (m) GAS | 25 hydrogen
25 hydrogen | 42 helium | 4 helium
4 helium | 42 helium | 42 helium | 4 helium | 50 hydrogen | | 50 helium | 50 helium | 4 belinm | | | 50 nitrogen | | 42 helium | | 50 | 50 hydrogen | | | 50 helium | 4 | | 25 hydrogen | эо иучтоучи | 4 helium | | 50 hydrogen | | 50 hydrogen | 4 helium | | (mm) | 0.31 | 0.30 | 3.00 | 0.30 | 0:30 | 3.00 | 0.32 | 0.30 | 0.30 | 0.30 | 0 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 9.00 | 0.30 | 0.30 | 2 | 0.30 | 0.30 | 3.00 | 3.00 | 0.31 | | 3,00 | | 0.30 | | 0.30 | 3.00 | | | | | (80-100mesh)
(80-100mesh) | | | (80-100mesh) | | | | | 100m01 | (meamont-ool | | | | 1400000 | (oremnor-og) | | | | | | (80-100mesh) | (80-100mesh) | | | (80-100mesh) | | | | | (80-100mesh) | | COLUMN TYPE | į | wall-coated open tubular | 3% w/w on Chromosorb W HP 3% w/w on Chromosorb W HP | wall-coated open tubular | wall-coated open tubular | 3% w/w on Chromosorb W HP | | bonded phase
bonded phase | bonded phase | wall-coated open tubular
bonded phase | | | wall-coated open tubular | religing coordinates | oben | wall-coated open tubular | 3% W/W on Chromosorb W hr | wall-coated open tubular | oben | wall-coated open tubular | | | 3% w/w on Chromosorb W HP | on Chromosorb W | bonded phase | wall-coated open tubular | 3% w/w on Chromosorb W HP | | wall-coated open tubular | • | wall-coated open tubular | 3% w/w on Chromosorb W HP | | COLUMN MATERIAL | . 6 | ester
glass | ester
glass
glass | glass | glass | ester
glass
glass | gJ | quartz glass | . g | glass
martz glass | ,
, | glass | ylass
glass | | glass
glass | glass | glass | glass | glass | glass | uartz | N | glass
glass | glass | glass | glass | glass | er
glass | ester
glass | ester | glass
glass | ester
glass | | | | dicycloheptyl e
SE-30 | exyl es | - | | yethyl
SE-30 | diethyl ester
OV-1 | OV-1 | ov-1 | SP-2100 | OV-1/SE-30 | ov-1 | | diheptyl ester | OV-101 | SE-30 | | dinexyl ester | ov-101 | SE-30
dijashitul ester | | ov-1 | OV1-1/SE-54
OV-1 | 0V-1 | OV1-1/SE-54 | OV-101 | | diisooctyl ester
OV-1/SE-30 g | diisopentyl est OV-101 | diisopropyl est | OV-1/SE-30
OV-101 | dimethoxyethyl
OV-1 | | LTP COLUMN
INDEX ORIGIN | phthalic acid, 0 1955 HP | ic acid, | ic acid, | | c acid, | c acid, | ic acid,
SAC | 1550 Hall | | 1559 Supelco | | 1568 | | ic acid, | 2494 | 2497 | : | phthalic acid, | 2306 | , C | Hall | | 1862 HP | 1868 | 1871 HP | 4 | g acid, | phthalic acid,
2525 | phthalic acid, | phthalic acid, | 1633
1758 | phthalic acid,
1980 | | LIT
REF | 1
55
27
55 | 1
27 | 28
1
27
27
27 | 22 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 | г | 1
27
27
27 | 27 | 27 | 27 | 1 4 | 27 | 27 | 27 | 35
44 | 49 | 28
42 | 28 | 19 | |---------------------|---|---|---|---|--------------------|--|-----------------------|--|-------------------------------|--|-------------------------|--|---------------------|--------------------------|------------------|------------------------------------|--------------------------------|-----------------------| | SAMPLE TYPE | standard
standard
standard
standard | standard
standard | standard
standard
standard
standard
standard | standard
standard
standard
standard | standard | standard
standard
standard
standard | standard | standard | standard | standard
standard | standard | standard | standard | standard
tap water | standard | standard
standard | standard | standard | | LEN CARRIER (m) GAS | 4 helium
25 hydrogen
50 nitrogen
25 hydrogen | 4 helium
42 helium | 50 hydrogen
4 helium
50 hydrogen
42 helium
50 hydrogen | 50 nitrogen
50 hydrogen
42 helium
4 helium | 4 helium | 4 helium
50 hydrogen
50 nitrogen
42 helium | 42 helium | 42 helium | | 4 helium | 42 helium | ~ | 42 helium | 50 hydrogen
25 helium | 15 helium | 50 hydrogen
1 argon | 50 hydrogen | | | a (m) | 3.00
0.31
0.30 | 3.00 | 0.32
0.30
0.30
0.30 | 0.30
0.30
0.30 | 3.00 | 3.00
0.30
0.30
0.30 | 0.30 | 0.30 | 0.30 | 3.00 | 0.30 | 0.30 | 0.30 | 0.3 | 0.25 | 0.32 | 0.32 | | | | (80-100mesh) | (80-100mesh) | (80-100mesh) | (80-100mesh) | (80-100mesh) | (80-100mesh) | | | | (80-100mesh) | | | | | | HP (silanised 80-100 mesh) | | | | COLUMN TYPE | 3% w/w on Chromosorb W HP
bonded phase
wall-coated open tubular
bonded phase | 3% w/w on Chromosorb W HP
wall-coated open tubular | bonded phase
3% w/w on Chromosorb W HP
wall-coated open tubular
wall-coated open tubular
wall-coated open tubular | -coated open tubular
-coated open tubular
-coated open tubular
/w on Chromosorb W HP | on Chromosorb W HP | /w on Chromosorb W HP -coated open tubular -coated open tubular -coated open tubular | ated open tubular | | oben | on Chromosorb W HP | coated open tubular | ed open | coated open tubular | ated open tubular | phase | | phase | on Celite | | | 3% w/w
bonded
wall-co | 3% w/w
wall-co | bonded phase 3% w/w on Cl wall-coated wall-coated wall-coated | wall-coated
wall-coated
wall-coated | 38 W/W | 3% w/w on Ch
wall-coated
wall-coated | wall-coated | wall-coated | wall-coated | 38 w/w | wall-co | ŧ | wall-co | wall-coat | ponded | bonded phase
Chromosorb W | bonded | 258w/w | | COLUMN MATERIAL | glass
glass
glass
glass | glass
glass | quartz glass
glass
glass
glass | glass
glass
glass
glass | glass | glass
glass
glass
glass | ter
glass
ter | glass
glass
glass | grass
er
glass | oxyl ester
glass
glass | ester
glass | ster
glass
ester | glass | glass | quartz glass | ne)
quartz glass
pyrex glass | quartz glass | | | | ter
54
54 | | | n
n | | ដ | 9 6 | 2 W | gr
ester
gl | :lohex}
9]
10 g] | | מ מ |
 | 5 | t dan da | т.
Б | 10 | | STATIONARY
PHASE | 7 8 18 | | dioctyl ester
OV-1
OV-1
OV-101
SE-30
OV-101 | . | | dipropyl es
0V-1
0V-101
0V-101
SE-30 | heptyl hexyl
SE-30 | neptyi nonyi
SE-30
heptyl pentyl | sE-30
hexyl octyl
SE-30 | isobutylcyclohexyl ester OV-1 glass OV-1/SE-30 glass | methyl undecyl
SE-30 | nonyi propyi
SE-30
pentyl propyl | | OV-1
Me silicone | DB-1 | (5-mecnylpyridine) OV-1 OV-101 Pyr | (4-mecmyrpyrrame)
OV-1 quar | GImernyı esu
SE-30 | | COLUMN | acid,
HP | acid, | acid, | acid, | acid, | acid | acid, | acia, | acid, | acid, | acid, | acid, | • | | | ra
Ta | AC 4. | acia, di | | LTP | 1 - | phthalic
2649
2876 | phthalic
2506 8
2519
2519
2682
2685
2860 | phthalic
2120
2121
2121
2122
2127
2140 | phthalic
2550 | phthalic
1743
1756
1756
1756 | phthalic
2404 | phthalic
2687
phthalic | 2310
phthalic
2497 | phthalic
2159
2174 | phthalic
2389 | phthallo
2325
phthallo | 1942 | pnycane
1811
1812 | pictoram
1908 | picoline, be
0832 SAC
0841 | prestine,
0832 S | pimelic
1313 | | | | | | | | | | | | 23 | 38 | 46 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | |--|---|---|---|------------------------------------|--|--------------------------------------|-----------------------------------|-----------------------------------|--------------------------|--------------------------|---------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | SAMPLE TYPE an standard standard | en standard
standard | standard
standard | standard
standard | | en standard
standard | standard
standard | standard | standard | standard | standard | standard | n food | en standard | | 1 nitrogen
4 helium | 5 helium
5 helium | 15 helium
15 helium | 50 hydrogen | ou nydrogen
15 helium | 5 helium
5 helium | 5 helium | | 15 helium | 5 helium | 8 |) nitrogen |) nitrogen | 50 nitrogen |) nitrogen |) nitrogen | 50 nitrogen |) nitrogen | 50 nitrogen | | | 9 | 0.25 15 | | | | 25 15
20 25 | 25 15 | | | 0.25 15 | | 0.28 80 | 2 50 | | 2 50 | 2 50 | | 2 50 | | | | | 0.25 | 0.25 | 0.3 | 0.25 | 0.25 | 0.25 | | 0 | 0 | | 0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | COLUMN TYPE ==================================== | 10%w/w on Chromosorb W HMDS (60-80mesh)
3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | uedo | Wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | wall-coated open tubular | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | COLUMN MATERIAL stainless steel glass | ștainless steel
glass | quartz glass
quartz glass | quartz glass
quartz glass | glass | glass
quartz glass | quartz glass
quartz glass | quartz glass | glass | quartz glass | quartz glass | | glass
loro | quartz glass | STATIONARY PHASE SE-30 aa- OV-101 | SE-30
OV-1 | . SE-30 | . SE-30 | | OV-1
SE-30 | SE-30
Me silicone | . SE-30 | OV-1/SE-30 | . SE-30 | . SE-30 | SE-30
hy1 | 7-101
,3,3-heptach | Me silicone | ŭ | Me silicone | | Me silicone | | cone | | LTP COLUMN INDEX ORIGIN ====== pinane, (+) cis- 1002 pinene, (+) -gamma- 0926 Quadrex O pinene, (-) -beta- 0965 Quadrex O pinene, (-) -beta- | <u>.</u> | piperinciare
2316 J&W Sci.
pipradrol
2105 J&W Sci. | pramokine
2248 J&W Sci.
prilocaine
1800 J&W Sci. | pristane
1709
pristane, nor- | 1652
procainamide
2175 J&W Sci. | procaine
1978 J&W Sci.
2049 HP | prochlorperazine
2921 J&W Sci. | progencerons
2793
promarine | 2266 J&W Sci. | 2234 Jaw Sci. | . 0480 si
propanal, 2-methyl | | | | | 1008 1 1 2-4 | - | • | propane, 1,2,3-1
1148 | | LIT | w 2 w 2 w 2 w 2 w 2 w 2 w 2 w 2 w 2 w 2 w | 40
55
55 | 5
3
40 | 40 | 40
53
33 | 40 | 40 | 40 | 40 | 40
38 | 28
38 | 40 | 40 | 40 | 40 | ഗനന | 40 | 40 | 40 | 40 | 40 | |--|--|--|--|--------------------------|--|--------------------------|--|--------------------------|--------------------------|---|---|--------------------------|---|--------------------------|--|--|--------------------------|--------------------------|--|--------------------------|--| | SAMPLE TYPE | essential oil
tap water
standard
standard | standard
standard
standard | tap water
essential oil
standard | standard | essential oil
standard
tap water
standard | standard | standard | standard | standard | standard
standard | standard
standard | standard | standard | standard | standard | tap water
standard
essential oil | standard | standard | standard | standard | standard | | LEN CARRIER (m) GAS | 50 helium
50 helium
50 nitrogen | 50 nitrogen
25 hydrogen
25 hydrogen | 50 helium
50 nitrogen | 50 nitrogen | 50 helium
50 helium
50 nitrogen | 50 nitrogen
2 | 50 hydrogen
2 | 50 nitrogen | 50 nitrogen | 50 nitrogen | 50 nitrogen | 50 helium
50 helium | 50 nitrogen | | ID (mm) | 0.30
0.30 | 0.2
0.31
0.31 | 0.30 | 0.2 | 0.30
0.30 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.32 | 0.2 | 0.2 | 0.2 | 0.2 | 0.30 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | COLUMN TYPE | bonded phase
wall-coated open tubular
bonded phase
wall-coated open tubular | wall-coated open tubular
bonded phase
bonded phase | wall-coated open tubular
bonded phase
wall-coated open tubular | wall-coated open tubular | bonded phase
bonded phase
wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) | bonded phase
15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
bonded phase
bonded phase | wall-coated open tubular | | COLUMN MATERIAL | quartz glass
glass
quartz glass
quartz glass | quartz glass
glass
glass | glass
quartz glass
quartz glass | quartz glass | quartz glass
quartz glass
glass
quartz glass | quartz glass
quartz glass
quartz glass | quartz glass | | LIP COLUMN STATIONARY INDEX ORIGIN PHASE | Hall Supe | | propane, 1,2-dichloro 0666 Supelco SP-2100 0679 Hall OV-1 | | Hall
Hall
Supe | | propane, 1-bromo-3-chioro 0841 Me silicone | | ٠, | | Ø | 7 7 | propane, 2,2-dichioro
0604 Me silicone
propane 2 2-dimethul-1 3-dic | 0875 2-brown | propane, 2 brome
0565 Me silicone
propane 2-brome-1-chlore | $\alpha = x$ | | | propane, z chioro z mechyt
0538 Me silicone
propane 2-iodo | | propane, z-roco-z-mechyr
0698 Me silicone | | LIT
REF | 1 | 40 | 40 | 46 | 20 | 53 | 18 | 18 | 21
20 | 20 | 20 | 21 | 20 | 7 7 | 19 | 21 | 2 | ; | 21. | , , | 61 | 6 | 18 | 38
10 | 38
12 | 38 | |-------------------------|--|-------------------------------------|--------------------------|----------------------------|--|--|---|------------------------------------|--|-------------------------------|---|----------------------|---------------------------------|----------|----------|---|--|---------------------|-------------------------------------|-------------------------|-----------------|----------------------|----------------------|--|---|-------------------------------| | er
Sample type | n standard | yen standard | yen standard | hen food | yen standard | gen standard | standard | standard | standard
gen standard | | yen standard | | yen standard | Brandard | standard | standard | standard | | standard | standard | standard | standard | standard | standard
gen standard | standard
gen standard
nen food | | | CARRIER
GAS |
helium | nitrogen | nitrogen | nitrogen | nitrogen | nitrogen | | | argon
nitrogen | | | | nitrogen | argon | | argon | ardon | | argon | argon | n | | | nitrogen | nitrogen
nitrogen | | | LEN
(m) | 4 | 50 | 50 |
80 | 2.4 | 8 | 3.6 | 3.6 | 1.5 | | 2.4 | 1.5 | 2.4 | | | 1.5 | 1.5 | | | | | | 3.6 | 25 | 2
25
80 | | | ID (mm) | 3.00 | 0.2 | 0.2 | 0.28 | 5.50 | ιC | | | 4.00 | 5.50 | 5.50 | 4.00 | 5.50 | 4.00 | | 4.00 | 4.00 | • • | 4.00 | 4.00 | | | | 2.0 | 2.0 | 2.0 | | COLUMN TYPE | 3% w/w on Chromosorb W HP (80-100mesh) | _ | wall-coated open tubular | wall-coated open tubular | 1 derivative
13% w/w on Chromosorb W AW | (mecoprop) 3% w/w on Chromosorb W HP (80-100mesh) | (allyl isobutyrate)
10%w/w on Celite 560 AW(60-80mesh) | 108w/w on Celite 560 AW(60-80mesh) | trimethylsilyl derlyative
10% w/w on Diatoport S (80-100mesh)
13% w/w on Chromosorb W AW | derivati | ilyl derivative
13% w/w on Chromosorb W AW | % w/w on Diatoport S | M/M % | | N |), trimethylsilyl derivative
10% w/w on Diatoport S (80-100mesh) | trimethylsilyl derivative
10% w/w on Diatoport S (80-100mesh) | derivative | 10% w/w on Diatoport S (80-100mesh) | trimethylailyl derivati | ı | 25%w/w on Celite | o | 15% w/w on Gas-Chrom Q (100-120 mesh) wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) wall-coated open tubular wall-coated open tubular | saa-Ch
open | | COLUMN MATERIAL | lorophenyl) (prolan) | | quartz glass | d)
glass | -dihydroxyphenyl, trimethylsilyl
SE-30 | phenoxy
glass | enyl ester
uminium | | | - | henyl), trimethylsilyl | | trimethylsilyl derivative
13 | | | ĕ | | yl), trimethylsilyl | | OV-1
OV-1 | Li Li | | aluminium | quartz glass | quartz glass | grant
quartz glass | | STATIONARY
PHASE | 2-nitro-1,1-bis(4-chlorophenyl) | 3-chloro-1,2-dibromo
Me silicone | loro
Me silicone | (propionic acid)
OV-101 | -dihydroxyphe
SE-30 | 2-(4-chloro-2
SE-30 | 2-methy1, 2-p
SE-30 | 2-propenyl ester
SE-30 | 3(4-methoxyphenyl),
OV-1
SE-30 | 3-(2-methoxyphenyl),
SE-30 | 3-(4-hydroxyphenyl), | | nyl,
0 | OV-1 | SE-30 | beta-(3-hydro:
OV-1 | beta-(3-hydroxyphenyl) | beta-(3-indoly1), | 0V-1 | beta- (4-hydro: | cinnamyl ester | ethyl ester
SE-30 | vinyl ester
SE-30 | SE-30
SE-30 | SE-30
SE-30
OV-101 | 2-methyl-1-
SE-30
SE-30 | | LTP COLUMN INDEX ORIGIN | propane, 2-nitro | ò | octacl | acid | propanoic acid,
1946 | propanoic acid,
1740 PEC | propanoic acid,
0815 | | propanoic acid,
1630
1637 | propanoic acid, | propanoic acid, | 1753 | propanoic acid,
1398 | 1405 | | propanoic acid,
1871 | propanoic acid, | propanoic acid, | 1971 | propanoic acid, | propanoic acid, | propanoic acid, | propanoic acid, | propanol, 1-
0530
0561 SGE | propanol, 2-
0480
0515 SGE | 51,
SG | | LIT | 38 | 38 | 40 | 40 | 40 | 10
38 | 38 | 40 | 14 | 14
60 | 14 | 40 | 40 | 40 | 14 | 14 | 14 | 14 | 14 | 14 | 40 | 40 | 40 | 40 | 40 | 40 | |---|--|---|-----------------------------------|--------------------------|-------------------------------|---|---|--------------------------|----------------------------|---|----------------------------|-------------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------------|---|--|---|------------------------------|----------------------------|----------------------------|--------------------------|----------------------------|----------------------------|--------------------------| | LEN CAFRIER SAMPLE TYPE (m) GAS SAMPLE TYPE | 2
25 nitrogen standard | 2 standard | 50 nitrogen standard | 50 nitrogen standard | 50 nitrogen standard | 25 nitrogen standard
2 standard | 2 standard | 50 nitrogen standard | 25 helium standard | 25 helium standard
50 nitrogen | 25 helium standard | 50 nitrogen standard | 50 nitrogen standard | 50 nitrogen standard | 25 helium standard | 50 nitrogen standard | | TO (mm) | 2.0 | 2.0 | 0.2 | 0.2 | 0.2 | 0.30 | 2.0 | 0.2 | 0.50 | 0.50 | 0.50 | 0.2 | 0.2 | 0.2 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | COLUMN TYPE (| 15% w/w on Gas-Chrom Q (100-120 mesh) 2 wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) 2 | wall-coated open tubular 0 | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
15% w/w on Gas-Chrom Q (100-120 mesh) 2 | 15% w/w on Gas-Chrom Q (100-120 mesh) 2 | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular 0 | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular 0 | wall-coated open tubular 0 | wall-coated open tubular | wall-coated open tubular 0 | wall-coated open tubular 0 | wall-coated open tubular | wall-coated open tubular 0 | wall-coated open tubular 0 | wall-coated open tubular | | COLUMN MATERIAL | quartz glass | | quartz glass | quartz glass | quartz glass | quartz glass | | quartz glass | glass | glass
quartz glass | glass | quartz glass | | INDEX ORIGIN PHASE | | propanone (acetone)
0475 SE-30 | 1,1,3-trichloro-2-
Me silicone | bromo-2-
Me silicone | one, chloro-Z-
Me silicone | -ol, Z-
SGE SE-30
SE-30 | | Me silicone | 1-(Z-methylphenyl)-1-SE-30 | 1-(3-methylphenyl)-1-
SE-30
Ogawaltd OV-101 | 1-(4-methylphenyl)-1-SE-30 | 1-chioro-Z-metnyi-i-
Me silicone | 2,3-dibromo
Me silicone | Z,3-dichloro Me silicone | Z-(Z-metnyiphenyi) -1-
SE-30 | , Z-(3-methylphenyl)-1-
SE-30 | $z = (s - t_{\text{Max}}) - t_{\text{Max}}$ $z = (s - t_{\text{Max}}) - t_{\text{Max}}$ $z = (s - t_{\text{Max}}) - t_{\text{Max}}$ | , 2-(4-metnylphenyl)-1-
SE-30
2-(4-minnlubenyl)-1- | 2-(4-Vinyiphenyi)-i-
SE-30
2-mothul-3-phenyi-1- | Z-macnyr-3-phenyr-r
SE-30 | Me silicone | Me silicone | | Me silicone | Me silicone | icone | | LIT | 40 | 40 | 40 | 40 | 40 | 18 | 18 | 18 | 18 | 18 | 38 | 18 | 80 | 18 | 38 | 18 | 18 | 0 | 18 | 18 | 18 | 49 | 28 | 38 | 53 | 53 | 23 | 23 | 23 | |---------------------|------------------------------|--------------------------------------|-----------------------------------|---------------------------------|---------------------------------|--------------|---|--|---|----------------------|------------------------------|---|----------------------|---------------------------|----------------------|------------------------------------|-------------------------------|---|------------------------------------|------------------------------------|--|--|--------------------------------|---|---|---|-------------------------------|-------------------------------|------------------------------| | SAMPLE TYPE | standard atandard | standard scandard | standard | LEN CARRIER (m) GAS | 50 nitrogen | 3.6 | 3.6 | 3.6 | 3.6 | ب | 2 | 9. | 8 | 3.6 | 2 | 9. | 9.0 | ٧ | 9. | 3.6 | 3.6 | 15 helium | 50 hydrogen | 7 | 2 nitrogen | 2 nitrogen | 15 helium | 15 helium | 15 helium | | - " | | | | | | m | m | m | m | m | 0. | m | c | | ٥. | m | ش | > | w | n | ĸ | 0.25 | 0.32 | ٥. | ις | 5
5 | 0.25 | 0.25 | 0.25 | | COLUMN TYPE (mm) | wall-coated open tubular 0.2 | 2 | methacrylate)
10%w/w on Celite 560 AW(60-80mesh) | <pre>(ethyl methacrylate) m 10%w/w on Celite 560 AW(60-80mesh)</pre> | methacrylate)
10%w/w on Celite 560 AW(60-80mesh) | methacrylate) | Gas-Chrom Q (100-120 mesh) 2 | methacrylate)
10%w/w on Celite 560 AW(60-80mesh) | me | Selite 560 AW (60-80mesh) | sh) 2 | 10%w/w on Celite 560 AW(60-80mesh) | | 15% w/w on Gas-Chrom Q (100-120 mesh) 2.0 | 10%w/w on Celite 560 AW(60-80mesh) | 10%w/w on Celite 560 AW(60-80mesh) | | (devrinol)
bonded phase | bonded phase 0 | 15% w/w on Gas-Chrom Q (100-120 mesh) 2.0 | (dichlorprop) 3% w/w on Chromosorb W HP | rophenyl)benzamido)-, isopropyl ester (flampropisopropyl)
glass 3% w/w on Chromosorb W HP (80-100mesh) 5 | wall-coated open tubular 0.3 | wall-coated open tubular 0.3 | wall-coated open tubular 0.3 | | COLUMN MATERIAL | quartz glass | ro
. quartz glass | quartz glass | | | methylpro | butyl ester (butyl maluminium | ethyl ester (ethyl mo
aluminium | hexyl ester (hexyl me
aluminium | methyl ester (methyl | arnmurann | pentyl ester (pentyl aluminium | propyl ester (propyl | aluminium | (butyl acrylate) | aluminium | (ethyl acrylate)
aluminium | (hexyl acrylate) | alumini | (methyl
alumini | <pre>c (pentyl acrylate) aluminium</pre> | (RS)-N, N-diethyl-2-(l-naphthyloxy)
DB-1 quartz glass | oro (propanil)
quartz glass | | 2-(2,4-dichlorophenoxyl) ester SE-30 quartz glass | oro-4-flourophenyl)
quartz glass | quartz glass | quartz glass | quartz glass | | IONA | hloro-1-
Me silicone | trans-1,2,3-trichloro
Me silicone | trans-1,3-dichloro
Me silicone | trans-1-bromo-1-
Me silicone | trans-1-chloro-1
Me silicone | 2-methyl, 2- | у1, | 2-methyl, et
SE-30 | 2-methyl, he
SE-30 | у1, | SE-30 | у1, | y1, | SE-30 | butyl ester
SE-30 | SE-30 | ethyl ester
SE-30 | SE-30 | D _ | methyl ester
SE-30 | pentyl ester
SE-30 | S)-N,N-dieth
DB-1 | 3',4'-dichloro | 1
SE-30
 2-(2,4-dich]
SE-30 | 2-(N-(3-chloro-4-flou
SE-30 quartz | SE-30 | SE-30 | SE-30 | | . × | | | propene, trans-1,
0743 | 0 | propene, trans-l- | oic acid, | oic acid, | propenoic acid, 2
0756 | propenoic acid, 2 | oic acid, | 0677 | oic acid, | oic acid, | 0856 | propenoic acid, 1 | | oic acid, | Ţ. | acıu, | propenoic acid, 1
0569 | マ | propionamide, (R:
2100 | propionanilide, 3 | propionate, ethyl | nic acid,
PEC | id, | propoxycaine
2307 J&W Sci. | propoxyphene
2165 J&W Sci. | propranolol
2111 Jaw Sci. | | LIT | 38 | 10 | 40 | 40 | 23 | 4.2 | 31 | 54 | 60
46 | 5.4 | 4 | 09 | , | 00 | 9 | 9 | | 09 | 37 | 0.40 | 69 | ; | 9 | 09 | 9 | 3 | 09 | 09 | 9 | Š | 9 4 | : | 09 | 09 | 09 | |---|---------------------------------------|-----------------------------------|---|--|--------------------------------------|---|--------------|----------|----------------------------|--------------|---------------------------------------|--------------|---|--------------------------|--------------------------|--|---|----------------------|--------------------------|--|--------------------------|--------------|--------------------------|--|------------------------------------|---------------------------------------|--------------------------|--------------------------|--------------------------|---|--------|---|---|--------------------------|--| | R SAMPLE TYPE | standard | en standard | en standard | en standard | standard | standard | | | en standard
en food | | , , , , , , , , , , , , , , , , , , , | | | en standard | en standard | en standard | | | en standard | | ue | | ue | ue | | : | ne | ue | ue | 70 S | | | en standard | en standard | ue | | LEN CARRIER (m) GAS | 7 | 25 nitrogen | 50 nitrogen | 50 nitrogen | 15 helium | 1 argon | | | 30 nitrogen
80 nitrogen | | 80 mitrogen | | 1 | oo urcroden | 50 nitrogen | 50 nitrogen | | 50 nitrogen | | mafortan oo | 50 nitrogen | | 50 nitrogen | 50 nítrogen | 50 mitroden | | 50 nitrogen | 50 nitrogen | 50 nitrogen | 1 | | | 50 nitrogen | 50 nitrogen | 50 nitrogen | | I QI (mm) | 2.0 | 0.30 | 0.2 | 0.2 | 0.25 | 8 | 0.22 | 0.22 | 0.22 | 0.22 | 80 | 0.22 | | 77.0 | 0.22 | 0.22 | | 0.22 | 0.22 | 0.7.0 | 0.22 | | 0.22 | 0.22 | 0 22 | 1 | 0.22 | 0.22 | 0.22 | 000 | 0.28 | 4 | 0.22 | 0.22 | 0.22 | | COLUMN TYPE | 15% w/w on Gas-Chrom Q (100-120 mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | Chromosorb W HP (silanised 80-100 mesh) | open tubular | an . | wall-coated open tubular | oben | sell-costed ones tubuler | oben | 9 | waii-coated open tubutar | wall-coated open tubular | wall-coated open tubular | | oben | wall-coated open tubular | open | wall-coated open tubular | • | wall-coated open tubular | wall-coated open tubular | wall-coated onen tubular | | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated onen tuhular | uedo | | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | | quartz glass | quartz glass | quartz glass | quartz glass | nurex alass | guartz glass | glas | quartz glass | quartz glass | | grantz glass | , | quartz grass | quartz glass | l
quartz qlass | | glas | N | grass
ethvlbutvl) | quartz qlass | sthylpentyl) | quartz glass | utyl
quartz qlass | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | quartz glass | quartz glass | 71
quartz glass | marty alass | i
i | | quartz giass
vl | quartz glass | quartz glass | | LTP COLUMN STATIONARY
INDEX ORIGIN PHASE | _ | propyn-1-ol, 2-
0546 SGE SE-30 | propyne, 3-bromo-1-
0631 Me silicone | propyne, 3-chloro-1-
0545 Me silicone | protriptyline
2207 J&W Sci. SE-30 | pyrazine
ocoć OV-101 | Ogawaltd | Ogawaltd | 0710 OgawaLtd OV-101 | õ | De . | yawaLtd | ě | 1032 Ogawaltd OV-101 | 1065 Ogawaltd OV-101 | pyrazine, 2,3-diethyl-5-methyl
1137 Ogawaltd OV-101 | ž | 0897 OgawaLtd OV-101 | Ogawaltd | U901 OV-101 OV-101 Blass over of the control | 1306 Odawaltd OV~101 | Ψ | 1377 Ogawaltd OV-101 | <pre>pyrazine, 2, 3-dimethyl-5-isobutyl 1200 OgawaLtd OV-101</pre> | pyrazine, 2,3-dimethyl-5-isopentyl | w | | 1352 Ogawaltd OV-101 | - Or | pyrazine, 2,5-dimethyl | | 9 | 1059 Ogawaitd OV-101
Dvrazine, 2.5-dimethvl-3-propvl | 1142 OgawaLtd OV-101 | Pytazine, 2,3-uimetiyi-3-etiyi
1066 OgawaLtd OV-101 | | 99 | |-----| | - | | age | | - | | | | LIT
REF | 60
31 | 09 | 09 | 60
54
54 | 54
54 | 54
60
54 | 09 | 60
54
54 | 09 | 60
31 | 31
60 | 60
31 | 9 | 09 | 60
31 | 54
54 | 09 | 09 | 09 | 09 | |-----------------------------------|--|---|--------------------------|---|--|--|--------------------------|--|---|--|---|--|---|--------------------------|---|--|--|--------------------------|---|--| | SAMPLE TYPE | standard
standard | | standard | standard
standard | standard
standard | standard
standard | | standard
standard | | standard
standard | standard
standard | standard
standard | standard | standard | standard
standard | standard
standard | standard | standard | standard | | | LEN CARRIER (m) GAS | 50 nitrogen
50 nitrogen | | 50 nitrogen | 50 nitrogen
50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen
50 nitrogen | 50 nitrogen | 50 nitrogen
50 nitrogen
50 nitrogen | 50 nitrogen | 50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen | 50 nitrogen | 50 nitrogen | 50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen
50 nitrogen | 50 nitrogen | 50 nitrogen | 50 nitrogen | 50 nitrogen | | ID Li
(mm) (1 | 0.22 | | 0.22 | 0.22 | 0.22 | 0.22
0.22
0.22 | 0.22 | 0.22
0.22
0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22
0.22
0.22 | 0.22 | 0.22 | 0.22 | 0.22 | | COLUMN TYPE | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
bonded phase
wall-coated open tubular | bonded phase
wall-coated open tubular | bonded phase
wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
bonded phase
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular |
wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular wall-coated open tubular | wall-coated open tubular
bonded phase
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | quartz glass
quartz glass | uartz | quartz glass | quartz glass
quartz glass
quartz qlass | | quartz glass
quartz glass
quartz glass | | | | quartz glass
quartz glass | yl
quartz glass
quartz glass | quartz glass
quartz glass | quartz glass | quartz glass | quartz glass
quartz glass | quartz glass
quartz glass
quartz glass | quartz glass | quartz glass | quartz glass | - (z-mernyıburyı)
quartz glass | | COLUMN STATIONARY
ORIGIN PHASE | ogawaltd OV-101 Ogawaltd OV-101 | <pre>pyrazine, 2,6-dimethyl-3-ethyl 1064 OgawaLtd OV-101 quarazine, 2,6-dimethyl-3-propyl</pre> | OgawaLtd OV-101 | pyrazine, 2-(1-methylbuty1)
1133 Ogawaltd OV-101
1133 Ogawaltd OV-101
1471 Orawaltd OV-101 | pyrazine, 2-(1-methylpropyl)
1040 Ogawaltd OV-101
1394 Ogawaltd OV-101 | thylbutyl)
OV-101
OV-101
OV-101 | thylbutyl)
OV-101 | pyrazine, 2-(2-methylpentyl)
1240 ogawaltd OV-101
1240 ogawaltd OV-101
1606 ogawaltd OV-101 | pyrazine, 2-(ethylpropy1)
1121 Ogawaltd OV-101 | ,, 2-acetyl
Ogawaltd OV-101
Ogawaltd OV-101 | pyrazine, 2-acetyl-3,5-dimethyl
1153 OgawaLtd OV-101
1153 OgawaLtd OV-101 | <pre>pyrazine, 2-acetyl-3-ethyl 1138</pre> | pyrazine, 2-acetyl-3-methyl
1061 Ogawaltd OV-101
pyrazine 2-acetyl-5-methyl | 1093 Ogawaltd OV-101 | Ogawaltd OV-101 | , 2-butyl
Ogawaltd OV-101
Ogawaltd OV-101
Ogawaltd OV-101 | pyrazine, 2-butyl-3-methyl
1121 Ogawaltd OV-101 | ogawalitd OV-101 | Pyrazine, 2-chloro-3-methyl
0951 Ogawaltd OV-101 | , Z-chloro-3-metnyl-3-{Z-metnylburyl)
Ogawalitd OV-101 quartz glass | | LTP CO
INDEX OR | 0101 | pyrazine, 2
1064 Oga | 1151 Oga | pyrazine, 2
1133 Oga
1133 Oga
1471 Oga | pyrazine, 2
1040 Oga
1394 Oga | ` <u>`</u> `Ö'Ö'Ö | ် _{ခွ} ် | pyrazine, 2
1240 Oga
1240 Oga
1606 Oga | pyrazine, 2
1121 Oga | pyrazine, 2
0993 Oga
0993 Oga | pyrazine, 2
1153 Oga
1153 Oga | pyrazine, 2
1138 Oga
1138 Oga | pyrazine, 2
1061 Oga | 1093 098 | Pytazine,
1088 Oga
1089 Oga | pyrazine, 2-butyl
1088 Ogawaltd
1088 Ogawaltd
1474 Ogawaltd | pyrazine, 2
1121 Oge | pyrazine, 2
1044 Oga | | pyrazine, 2
1371 Oga | | 167 | | |------|--| | page | | | LIT | 09 | 09 | 09 | 60
8.7 | , r.v. | 09 | 31 | 09 | 09 | 60 | 09 | 09 | 09 | 57 | 09 | * | 31 | 09 | 31 | 60 | 54 | 60
54 | , Ç | 3 | 09 | 09 | 09 | 09 | 09 | 554 | | |---|-----------------------------------|--|---|-------------------------------|--------|--|--------------------------|--------------------------|--------------------------|--|--------------------------|---|---|---|--------------------------|-------------------------|--------------------------|--------------------------|--|--------------------------|--------------------|--|--------------------------|-------------------|---|----------------------------|--------------------------|---|---|--|--| | CARRIER SAMPLE TYPE | nitrogen | nitrogen | nitrogen | nitrogen
nitrogen etandard | | | nitrogen standard | nitrogen standard | nitrogen | nitrogen | nitrogen standard | nitrogen | nitrogen standard | nitroden standard | | | nitrogen standard | nitrogen
nitrogen standard | | | nitrogen | nitrogen | nitrogen | nitrogen | nitrogen | nitrogen standard
nitrogen standard | | | LEN (m) | 50 | 20 | 20 | 50 | 20 | 20 | 20 | 20 | 20 | 50 | 50 | 50 | 50 | 50 | 50 | 2 | 20 | 50 | 50 | 20 | 20 | 20 | 50 |)
) | 20 | 50 | 20 | 50 | 50 | 50 | | | O (E) | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 77.0 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | uedo | wall-coated open tubular bonded phase | wall-coated open tubular | nedo | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | • | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | | <pre>wall-coated open tubular '1)</pre> | , wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | bonded phase
wall-coated open tubular | | | COLUMN MATERIAL | -(2-methylpentyl)
quartz glass | -3-methyl
quartz glass | r-s-mernyı
quartz glass | quartz glass | glas | | glas | quartz glass | quartz glass | quartz glass | l
quartz glass | r-s-mernyr
quartz glass | quartz glass | guartz glass | glas | | quartz glass | quartz glass | quartz glass | | | quartz glass
quartz qlass | quartz | 1-5-(2-methybutyl | quartz glass
 -5-(2methylpenty | quartz glass | quartz glass | opyl-3-methyl
quartz glass | quartz qlass | | | | LIP COLUMN STATIONARY
INDEX ORIGIN PHASE | 2-chloro-3-methyl-5 | pyrazine, 2-chloro-5-isobutyl-
1264 Ogawaltd OV-101 | pyrazine, 2-chioro-5-1sopropyl-3-metnyl
1173 Ogawaltd OV-101 quartz gl | ်ဝင် | | pyrazine, 2-ethoxy-3-ethyl
1101 OqawaLtd OV-101 | 1101 Ogawaltd OV-101 | | 1415 Ogawaltd OV-101 | pyrazine, z-etmoxy-5 isobucyi
1314 Ogawalita OV-101 | | Pyrazine, Z-ethoxy-5-19opropy3-mechyl
1230 Ogawaltd OV-101 quartz gl | pyrazine, 2-ethoxy-5-methy1
1047 Ogawaltd OV-101 | pyrazine, 2-ethyl
0894 Ogawalid OV-101 | Ogawaltd | Ogawaltd
ne, 2-ethyl | 1037 Ogawaltd OV-101 | | pyrazine, 2-ethyl-5-methyl
0980 Oqawaltd OV-101 | 0980 Ogawaltd OV-101 | z etny.
Jawaltd | 1148 Ogawaltd OV-101
1635 Ogawaltd OV-101 | ne, 2-ethyl | ā | 1602 OgawaLtd OV~101 quartz glas
nurazine, 2-ethulthio-3-methul-5-(2methul | 1686 Ogawaltd OV-101 | | pyrazine, 2-ethylthio-5-isopropyl-3-methy
1418 OgawaLtd OV-101 | pyrazine, 2-hexyl
1293 OqawaLtd OV-101 | 1293 Ogawaltd OV-101
1668 Ogawaltd OV-101 | | | LIT
REF | 54
60
54 | 09 | 60
28 | 60
54
54 | 54
60
54 | 43
28
31 | 31
60 | 60
54
54 | 60
31 | 60
54
54
54 | 09 | 09 | 09 | 60
54
54 | 09 | |--------------------------------|--|--|--|--|---|---|--|--|--|--|--|--|---|--|--------------------------| | SAMPLE TYPE | standard
standard | e q | n standard
n standard | n
n standard
n standard | n standard
n
n standard | tap water
n standard
n standard | n standard
n standard | n standard
n standard
n standard | n standard
n standard | n standard
n standard
n food
n standard | u u | n standard
n | a a | n
n standard
n standard | n øtandard | | LEN CARRIER
(m) GAS | nitro
nitro
nitro | 50 nitrogen
50 nitrogen | 50 nitrogen
50 hydrogen | 50 nitrogen
50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen
50 nitrogen | 50 helium
50 hydrogen
50 nitrogen | 50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen
80 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen | 50 nitrogen
50 nitrogen
50 nitrogen | 50 nitrogen | | (mm) | 0.22
0.22
0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.30
0.32
0.22 | 0.22 | 0.22
0.22
0.22 | 0.22 | 0.22
0.22
0.28
0.28 | 0.22 | 0.22 | 0.22 | 0.22
0.22
0.22 | 0.22 | | COLUMN TYPE | bonded phase
wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
bonded phase | wall-coated open tubular
bonded phase
wall-coated open tubular | bonded phase wall-coated open tubular wall-coated open tubular | bonded phase
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
bonded phase
wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated open
tubular
bonded phase
wall-coated open tubular
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | <pre>wall-coated open tubular wall-coated open tubular</pre> | wall-coated open tubular
bonded phase
wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | gla
gla
gla | 6-trimethyl
quartz glass
quartz glass | ,
quartz glass
quartz glass | quartz glass
quartz glass
quartz glass | quartz glass
quartz glass
quartz glass | y
quartz glass
quartz glass
quartz glass | thio
quartz glass
quartz glass | quartz glass
quartz glass
quartz glass | quartz glass
quartz glass | quartz glass
quartz glass
glass
quartz glass | quartz glass
quartz glass | | .bucyı)~3~occyı
quartz glass
quartz glass | quartz glass
quartz glass
quartz glass | quartz glass | | COLUMN STATIONARY ORIGIN PHASE | 2-isobutyl
Jawalitd OV-101
Jawalitd OV-101
Jawalitd OV-101 | 2-isobuty1-3,5,6-tr;
awaltd OV-101
awaltd OV-101 | ,, 2-isobutyl-3-methoxy
OgawaLtd OV-101
SAC OV-1 | | 2-18opropyl
JawaLtd OV-101
JawaLtd OV-101
JawaLtd OV-101 | | b, 2-isopropyl-3-methylthio
Ogawaltd OV-101
Ogawaltd OV-101 quar | , 2-methoxy
Ogawaltd OV-101
Ogawaltd OV-101
Ogawaltd OV-101 | | y, Z-methy, Ogawaltd OV-101 Ogawaltd OV-101 Oyawaltd OV-101 Ogawaltd OV-101 | Pyrazine, c mernyr occyr
1586 Ogawaitd OV-101
Pyrazine, 2-methyl-3-phenoxy
1465 Ogawaitd OV-101 | 2-methyl-3-pr
awaltd OV-101
2-methyl-5-(2
awaltd OV-101 | y, Z-metnyı-o-(Z-metnyıburyı)
Ogawalıtd OV-101 quartz
Ogawalıtd OV-101 quartz
- 2-methvithio | | Ō | | LIP | Pyrazine,
1043 0
1043 0
1406 0 | Pyrazine,
1250 Oc
1263 Oc | pyrazine,
1078 Og
1160 SA | pyrazine,
1157 C
1157 C
1530 C | pyrazine,
0949 Oc
0969 Oc
1316 Oc | pyrazinė,
1040
1076 SI
1078 Og | pyrazine,
1273 Og
1273 Og | pyrazine,
0877 Og
0877 Og
1306 Og | Pyrazine,
0954 Og
0954 Og | Pyrazine,
0801 Og
0801 Og
0806
1235 Og | Pyrazine,
1586 Og
Pyrazine,
1465 Og | pyrazine,
1072 Og
pyrazine,
1923 Og | Pyrazine,
1962 Og
1985 Og | 1076 0
1076 0
1076 0
1600 0 | 0 6960
0 6960 | | tubular | 169 | |-------------|------| | oben | pade | | wall-coated | | | glass | | | quartz | | | | | | LIT
REF | 09 | 60
54
54 | 54
54
54 | 54
60
54 | 60
54
54 | 31 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | |----------------------------|------------------------------------|---|---|--|--|---|--|--|---|---|---|--|--|--|-----------------------------------|--|--|---|---|--|--|--| | SAMPLE TYPE | | standard
standard | standard
standard | standard
standard | standard
standard | standard | standard
standard | standard | | standard | | | | | | | | · | , | | | | | LEN CARRIER (m) GAS | 50 nitrogen | 50 nitrogen
50 nitrogen st
50 nitrogen st | 50 nitrogen st
50 nitrogen
50 nitrogen st | 50 nitrogen at
50 nitrogen
50 nitrogen at | 50 nitrogen
50 nitrogen st
50 nitrogen st | 50 nitrogen a | 50 nitrogen si
50 nitrogen si | 50 nitrogen s | 50 nitrogen | 50 nitrogen a | 50 nitrogen | (mm) | 0.22 | 0.22
0.22
0.22 | 0.22 | 0.22 | 0.22
0.22
0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | | COLUMN TYPE | wall-coated open tubular | wall-coated open tubular
bonded phase
wall-coated open tubular | bonded phase
wall-coated open tubular
wall-coated open tubular | bonded phase wall-coated open tubular wall-coated open tubular | wall-coated open tubular
bonded phase
wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | (methylthio)
ss wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | <pre>,, wall-coated open tubular
+hiol</pre> | wall-coated open tubular | wall-coated open tubular | (runs)
wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | quartz glass | quartz glass
quartz glass
quartz glass | | | | quartz glass | quartz glass
yl
quartz qlass | | | thio)
quartz glass | thio)
quartz glass
-5-72-methylbutul) | pyrazine, 3-metnyi-z-metnoxy 3 (z.metnyi-z-ry)
1362 ogawaltd OV-101
1252 - 2-methyi-2-methyi-apthylpentyl) | quartz glass | pyrazine, 3-methyl-5-(2-methylbucyl)-2-(wecmylcun, 1552 Ogawalid Ov-101 quartz glass | ylbucyl/2-puemoky
quartz glass | pyrazine, 3-methy1-3-(2-methy1penry1)-2-(pheny1cuit) 2064 OgawaLtd OV-101 quartz glass wal | guartz glass | <pre>pyrazine, 5-1sobuty1-3-metny1-2-(metny1th10) 1446 OgawaLtd OV-101 quartz glass</pre> | 1-2-(phenylthio)
quartz glass | quartz glass | 1-2-pnenoxy
quartz glass | pyrazine, 5-1sopropy1-3-metny1-2-(metny1tnio)
1362 ogawaLtd OV-101 quartz glass | | N STATIONARY
IN PHASE | e, 2-octyl
OgawaLtd OV-101 | ', 2-pentyl
Ogawaltd OV-101
Ogawaltd OV-101
Ogawaltd OV-101 | td OV-101
td OV-101
td OV-101
td OV-101 | Ogawaltd OV-101
Ogawaltd OV-101
Ogawaltd OV-101
Ogawaltd OV-101 | ', 2-propyl
Ogawaltd OV-101
Ogawaltd OV-101
Ogawaltd OV-101 | pyrazine, 2-vinyl 0907 OgawaLtd OV-101 quartz | Pyrazine, Joury 2,5 cm. 1184 Ogawaltd Ov-101
pyrazine, 3-butyl-2,6-dimethyl
1196 Ogawaltd Ov-101 | pyrazine, 3-ethyl-2-methoxy 1037 OqawaLtd OV-101 | pyrazine, 3-methyl 5-(2-methylpentyl)-2-
1638 Ogawalid OV-101 quartz gla | pyrazine, 3-methyl-2-(methylthlo)
1151 OgawaLtd OV-101 que | pyrazine, 3-methyl-2-(phenylthio)
1658 OgawaLtd OV-101 qua | ; 3-methy1-2-methoxy-3 (z methy1)
Ogawaltd Oy-101
3-methovy-5-(9-methy1) | Ltd OV-101 | etny1-5-(z-metn
Ltd OV-101 | etny1-3-(2-metm
Ltd OV-101 | <pre>ethy1-5-(z-meth
Ltd OV-101</pre> | pyrazine, 5-butyl-z,3-dimetnyi
1254 Ogawaltd OV-101 | ogawaLtd OV-101 | pyrazine, 5-isobutyl-3-methyl-2-(phenylt
1882 Ogawaltd OV-101 quartz gla | pyrazine, 5-isobuty1-5-metny1-z-metny0x
1257 OgawaLtd OV-101 quartz gli | pyrazine, 5-1sobuty1-3-methy1-z-phenoxy
1706 OgawaLtd OV-101 quartz gla | sopropy1~3-mern
Ltd OV-101 | | LIP COLUMN
INDEX ORIGIN | pyrazine, 2-octyl
1495 OgawaLtd | pyrazine, 2-pentyl
1192 Ogawaltd O
1192 Ogawaltd O
1575 Ogawaltd O | pyrazine, 2-phenoxy
1415 Ogawaltd OV-101
1415 Ogawaltd OV-101
2104 Ogawaltd OV-101 | pyrazine, 2-phenylthio
1606 Ogawaltd OV-103
1606 Ogawaltd OV-103
2400 Ogawaltd OV-103 | pyrazine, 2-propyl
0986 Ogawaltd OV-101
0986 Ogawaltd OV-101
1374 Ogawaltd OV-101 | pyrazine, 2-vi
0907 Ogawal | Pytazine, Joury 1, 2, 3
1184 Ogawaltd OV-101
pyrazine, 3-butyl-2,6-d | pyrazine, 3-ethyl-2-met
1037 OqawaLtd OV-101 | pyrazine, 3-me
1638 OgawaI | pyrazine, 3-me
1151 Ogawal | pyrazine, 3-me
1658 Ogawal | pyrazine, 3-me
1362 Ogawal | pyrazine, 3-me
1444 Ogawal | pyrazine, 3-m
1552 Ogawal | pyrazine, 3-m
1807 Ogawal | pyrazine, 3-m
2064 Ogawal | pyrazine, 5-bu
1254 Ogawal | Pyrazine, 5-1:
1446 Ogawal | pyrazine, 5-i
1882 Ogawal | pyrazine, 5-19
1257 Ogawal | pyrazine, 5-11
1706 Ogawal | pyrazine, 5-1
1362 Ogawa | | LIT
REF
=== | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 09 | 60
42 | 09 | 60
46 | 9 | п н (| 2 8
2 8 | 56 | 56 | 56 | | 4 2 4 6
2 8 8 8 | 28 | 58 | 28 | |--------------------------------|----------------------------------|---|---|---|--|---|---|---|---|----------------------------------|--|--|---------------------------------|--|-------------------------|---
--|---------------|----------------------------------|--------------------------|---------------------------|--|--------------------------|--------------------------|---------------------------| | SAMPLE TYPE | | | | standard | | | | | | | | standard
standard | | standard
food | air | essential oil
standard | standard
standard | standard | standard | standard | standard | standard
standard
food
standard | standard | standard | standard | | LEN CARRIER (m) GAS | 50 nitrogen nitrogen
1 argon | 50 nitrogen | 50 nitrogen
80 nitrogen | 50 helium | | 50 nitrogen
50 hydrogen | 12 | 12 | 12 | 4 helium | 1 argon
50 hydrogen
80 nitrogen
2 | 20 nitrogen | 20 nitrogen | 20 nitrogen | | ID (mm) | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.30 | 3.00 | 0.20 | 0.20 | 0.20 | 0.20 | 3.00 | 0.32 | 0.23 | 0.23 | 0.23 | | | | | | | | | | | | | | 80-100 mesh) | | | | (80-100mesh) | | | | | (80-100mesh) | 80-120 mesh) | | | | | COLUMN TYPE | wall-coated open tubular tubular
Chromosorb W HP (silanised | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | bonded phase | bonded phase
3% w/w on Chromosorb W HP | wall-coated open tubular
bonded phase | bonded phase | bonded phase | bonded phase | 3% w/w on Chromosorb W HP | Chromosorb W HP (silanised 80-100 mesh bonded phase wall-coated open tubular 15% w/m on Gaa-Chrom O (100-120 mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | COLUMN MATERIAL | 1-2-(phenylthio)
quartz glass | L-2-methoxy
quartz glass | L-2-phenoxy
quartz glass | nio)
quartz glass | əthyl
quartz glass | o-3-methyl
quartz glass | 7-3-methyl
quartz glass | thio-3-methyl
quartz glass | quartz glass | l-2-(phenyithio)
quartz glass | 1-2-phenoxy
quartz glass | quartz glass
pyrex glass | quartz glass | quartz glass
glass | quartz glass | quartz glass
glass | quartz glass
quartz glass | g | quartz glass | quartz glass | glass | pyrex glass
quartz glass
glass | glass | glass | glass | | COLUMN STATIONARY ORIGIN PHASE | 5-isopropyl-3-methyl | e, 5-isopropyl-3-methyl-2-methox
OqawaLtd OV-101 quartz gl | pyrazine, 5-isopropyl-3-methyl-2-phenox
1620 OgawaLtd OV-101 | pyrazine, 5-methyl-2-(methylthio)
1163 OgawaLtd OV-101 qua | pyrazine, 5-sec-butly-2,3-dimethyl
1194 OgawaLtd OV-101 | pyrazine, 5-sec-butyl-2-chloro-3-methyl
1256 OgawaLtd OV-101 | <pre>pyrazine, 5-sec-buty1-2-ethoxy-3-methy1 1306 OgawaLtd OV-101</pre> | pyrazine, 5-sec-butyl-2-ethylthio-3-met
1494 Ogawaltd OV-101 quartz gl | Pyrazine, 5-sec-buryi-3-metnyi-z-(metny
1441 OgawaLtd OV-101 quartz gl | | , 5-sec-butyl-3-methyl-2-phenox
OgawaLtd OV-101 | chloro
gawaLtd OV-101
OV-101 | o, sec-butyl
OgawaLtd OV-101 | , tetramethyl
OgawaLtd OV-101
OV-101 | , 4-chloro
Hall OV-1 | Hall OV-1
OV-1 | SE-30
OV-1 | P Me silicone | cyclopenta(cd)
HP Me silicone | methyl
HP Me silicone | nd ne
OV-1 | OV-101
OV-101
OV-101 | | | 2,4,6-trimethy1
OV-101 | | LTP CINDEX C | pyrazine,
1806 Oc | pyrazine,
1170 Oc | pyrazine,
1620 oc | pyrazine,
1163 Oc | pyrazine,
1194 Oc | pyrazine,
1256 Og | pyrazine,
1306 Oc | pyrazine,
1494 Oc | pyrazine,
1441 Oc | pyrazine,
1874 Og | pyrazine,
1694 O | pyrazine,
0861 O
0895 | pyrazine,
1040 O | Pyrazine,
1067 Oc
1068 | pyrazole,
0867 Ha | pyrene
1385 H
1983 | | | | pyrene, me
2231 HP | pyribenzamine
1980 | ø | 0745 | pyridine,
0940 | pyridine,
0982 | | LIT | 58 | 58 | 58 | 42 | 28 | 58 | 58 | 42 | 28 | 42 | 58 | 23 | 49 | 49 | - | 21 | 21 | c | 70
70 | 21 | 20 | 20 | 20 | 21 | 21 | 20 | 21 | |------------------------------------|--------------------------|--------------------------|--------------------------|---|--------------------------|--------------------------|--------------------------|---|--------------------------|---|--------------------------|-----------------------------------|---|-------------------------|--|---|---|----------------|----------------------------|-------------------------|---|--|--|----------|--|--|--| | SAMPLE TYPE | standard | standard | | standard | standard | standard | standard | standard | standard
standard | standard
standard | | LEN CARRIER (m) GAS | 20 nitrogen | 20 nitrogen | 20 nitrogen | 1 argon | 20 nitrogen | 20 nitrogen | 20 nitrogen | 1 argon | 20 nitrogen | 1 argon | 20 nitrogen | 15 helium | 15 helium | d)
15 helium | 4 helium | .5 argon | .5 argon | | 2.4 nitrogen | 1.5 argon | .4 nitrogen | .4 nitrogen | .4 nitrogen | .5 argon | .5 argon | .4 nitrogen
.5 argon | .5 argon
4 nitrogen | | (mm) (i | 0.23 | 0.23 | 0.23 | ∾. | 0.23 | 0.23 | 0.23 | 8 | 0.23 | 8 | 0.23 | 0.25 | 0.25 | methylated)
0.25 15 | 3.00 | 4.00 1 | 4.00 1 | | 5.50 2 | | 5.50 2 | 5.50 2 | 5.50 2 | 4.00 1 | 4.00 1 | 5.50 2
4.00 1 | 4.00 1
5.50 2 | | COLUMN TYPE | Wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | Chromosorb W HP (silanised 80-100 mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | Chromosorb W HP (silanised 80-100 mesh) | wall-coated open tubular | Chromosorb W HP (silanised 80-100 mesh) | wall-coated open tubular | wall-coated open tub | <pre>-6-methyl-2, 4(1H, 3H) - (terbacil) bonded phase</pre> | -5-, methylated (a-rest | 3% w/w on Chromosorb W HP (80-100mesh) | trimethylsilyl derivative 10% w/w on Diatoport S (80-100mesh) | trimethylsilyl derivative 108 w/w on Diatoport S (80-100mesh) | : | 13% W/w on Chromosorb W AW | 10% w/w on Diatoport S | | <pre>1y1 derivative 13% w/w on Chromosorb W AW</pre> | derivative
13% w/w on Chromosorb W AW | 1/M 80 | trimethylsilyl derivative
10% w/w on Diatoport S (80-100mesh) | <pre>derivative 13% w/w on Chromosorb W AW 10% w/w on Diatoport S (80-100mesh)</pre> | e 10% w/w on Diatoport S (80-100mesh) 13% w/w on Chromosorb W AW | | COLUMN MATERIAL | glass | glass | glass | pyrex glass | glass | glass | glass | pyrex glass | glass | pyrex glass | glass | quartz glass | thylethyl
glass | -alpha- (4
glass | G] 288 | enyl lactone, tri | | trimethylsilyl | | | | tr | trimethylsilyl | יסי | trime | trimethylsilyl | ylsilyl derivative | | LTP COLUMN STATIONARY INDEX ORIGIN | , 2,4-dimethy1
OV-101 | 2,5-dimethyl
OV-101 | 2, 6-dimethyl
OV-101 | | 2-methyl $OV-101$ | | 3,5-dimethyl OV-101 | 3-chloro
OV-101 | 3-methy1
OV-101 | pyridine, 4-cyano
0955 OV-101 | 4-methyl $OV-101$ | Pyrilamine
2200 J&W Sci. SE-30 | inedione, | ethano | idine 017-1 | c acid, 2,5-dihydroxyphe | c acid, 2-h | sacid, 2-m | | 1950 5E-30
1954 OV-1 | pyruvic acid, 3,4-dihydroxyphenyl, 2209 | pyruvic acid, 3,4-dimethoxyphenyl, 2130 | pyruvic acid, 3-hydroxyphenyl, 2000 | c acid, | acid, | pyruvic acid, 4-hydroxyphenyl,
2051 SE-30
2061 OV-1 | pyruvic acid, phenyl, trimethylsilyl
1702
1705 SE-30 | | LIT | 23 | 23 | 58
1 | 58 | 58 | 58 | 58 | 58 | 1 | 58 | 58 | 58 | 44 | 56 | 19 | 19 | 41
19
4 | 19 | 19 | - | 7 | - | 1 4 | |-------------------------|---------------------------------------|------------------------------|---|------------------------------------|--------------------------|---|----------------|----------------|-----------------|----------------|----------------|--------------------------------|------------------------------------|----------------|-------------------------|-------------|---|-------------|-----------------------|-----------------|-----------------|-----------------|-------------------------------------| | SAMPLE TYPE | standard
standard | standard
standard | standard
standard | standard
standard | standard | standard
standard | standard | standard | standard | standard | standard | standard | tap water | standard | standard | standard | standard
standard
standard | standard | standard | standard | standard | standard | standard
standard | | LEN CARRIER
(m) GAS | 15 helium
25 helium | 15 helium
25 helium | 20 nitrogen
4 helium | 20 nitrogen
4 helium | 20 nitrogen | 20 nitrogen
4 helium | 20 nitrogen | 20 nitrogen | 4 helium | 20 nitrogen | 20 nitrogen | 20 nitrogen | 25 helium | 12 | | | 15 helium | | | 4 helium | 4 helium | 4 helium | 4 helium | | ID (mm) | 0.25 | 0.25 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 3.00 | 0.23 | 0.23 | 0,23 | | 0.20 | | | 0.32 | | | ы) 3.00 | ы) 3.00 | ы) 3.00 | h) 3.00 | | | | | (80-100mesh) | (80-100mesh) | | (80-100mesh) | | | (80-100mesh) | | | | | | | | | | | (80-100mesh) | (80-100mesh) | (80-100mesh) | (80-100mesh) | | COLUMN TYPE | open tubular | open tubular | wall-coated open tubular
3% w/w on Chromosorb W HP | ed open tubular
Chromosorb W HP | open tubular | wall-coated open tubular
3% w/w on Chromosorb W HP | l open tubular | l open tubular | Chromosorb W HP | l open tubular | l open tubular | l open tubular | | 9 | elite. | Celite | ed open
tubular
Celite | Celite | Celite | Chromosorb W HP | Chromosorb W HP | Chromosorb W HP | w/w on Chromosorb W HP | | | wall-coated | wall-coated | wall-coated
3% w/w on Ch | wall-coated
3% w/w on Ch | wall-coated | wall-coated
3% w/w on Cl | wall-coated | wall-coated | 38 w/w on C | wall-coated | wall-coated | wall-coated | | bonded phase | 25%w/w on Celite | 258w/w on C | wall-coated
25%w/w on Ce | 25%w/w on C | 258w/w on C | 3% w/w on (| 38 w/w on C | 3% w/w on (| 3% w/w on (| | COLUMN MATERIAL | quartz glass
quartz glass | quartz glass
quartz glass | glass
glass | glass
glass | glass | glass
glass | glass | glass | glass | glass | glass | glass | | quartz glass | | | quartz glass
qlass | 1 | | ester
glass | glass | ester
glase | glass
glass | | STATIONARY
PHASE | SE-30
Me silicone | SE-30
Me silicone | OV-101
OV-1 | | | thyl
-101
-1 | -101 | 1
V-101 | V-1 | -101 | -101 | | 2,6-di-tert-butyl
P Me silicone | ø | ethyl ester
SE-30 | D D | methyl ester
DB-1
SE-30
OV-1/SE-30 | ster | pentyl ester
SE-30 | (2-ethy
ov-1 | H | yethyl es | dibutyl ester
OV-1
OV-1/SE-30 | | LTP COLUMN INDEX ORIGIN | quinidine
2745 J&W Sci.
2807 HP | a
J&W Sci
HP | quinoline
1227
1247 | | quinoline, 2,6-d
1399 | 7 | 7 | 4 | | | | quinoline, 8-methyl
1304 OV | quinone, 2,6-di-
1440 HP | HP | salicylic acid,
1261 | | salicylic acid,
1163 J&W SCI
1181
1193 | acid, | ic acid, | | acid, | acid, | sebacic acid, d:
2137
2137 | | , "Al | quii
22 | quii
2 | qui
1 | qui
1 | qui. | dan
1 | qui | qui. | qui
1 | age T | qui
1 | qui | qui | retene
2187 | sal
1 | gal
1 | 168
11 | 1 60 L | 39]
1 | seb
2 | seb
2 | seb
2 | 3eE
2 | | LIT
REF | 1 | | | Ħ | • • | 4.7 | 49 | 25 | 25 | 25. | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25.0 | 25.5 | İ | 1
25 | c
u | C 7 | 1 | 23 | J. | 14 | 32 | 38 | 14 | > | | |-----------------------------------|---|---|---|-----------------------|-----------------------|--------------|------------------------------|---|---|------------------------------------|---|---|---|---------------|--------------------|----------------------------------|----------------------------------|------------------------------------|------------------------------------|--|-----------------------------------|--|---------------|---|--|-----------------------------------|--------------------------|-----------------|--------------|--|------------------------------|----------------------|----------------| | SAMPLE TYPE | standard | standard | standard | atandard | , | standard | standard
standard | standard | standard
standard | 444 | standard | standard | standard
standard | tap water | standard | standard | | standard | | | |) LEN CARRIER h) (m) GAS | 00 4 helium | 00 4 helium | 00 4 helium | 00 4 helium | , | 20 25 helium | 25 15 helium
20 25 helium | 00 3.0 | .00 3.0 | .00 3.0 | n | .00 3.0 | .00 3.0 | | 00 3.0 | | | | | 0.8.00 | | .00 4 helium .00 3.0 | , | .00 3.0 | .00 4 helium | 25 15 helium
20 25 helium | | 0 25 | 5 100 helium | 200 | 50 25 helium |)
} | | | COLUMN TYPE (mm) | 3% w/w on Chromosorb W HP (80-100mesh) 3.00 | 3% w/w on Chromosorb W HP (80-100mesh) 3.00 | 3% w/w on Chromogorb W HP (80-100mesh) 3.00 | | c (meamont-on) an w | 0.2 | bonded phase 0.2 | 1% w/w on Gas-Chrom Q (100-120mesh) 3.0 | 1% w/w on Gas~Chrom Q (100-120mesh) 3.0 | w/w on Gas-Chrom Q (100-120mesh) 3 | 18 w/w on Gas-Chrom Q (100-120mesh) 3.0 | 1% w/w on Gas-Chrom Q (100-120mesh) 3.0 | 1% w/w on Gas-Chrom Q (100-120mesh) 3.0 | (100-120mesh) | w/w on Gas-Chrom Q | w/w on Gas-Chrom Q (100-120mesh) | w/w on Gas-Chrom Q (100-120mesh) | % w/w on Gas-Chrom Q (100-120mesh) | % w/w on Gas-Chrom Q (100-120mesh) | 1% w/w on Gas-Chrom Q (100~120mesn) 3.00 | 0 n/n on one onton K 100 trousen) | 3% w/w on Chromosorb W HP (80-100mesh) 3.0 1% w/w on Gas-Chrom O (100-120mesh) 3.0 | | 1% w/w on Gas-Chrom Q (100-120mesh) 3.0 | 3% w/w on Chromosorb W HP (80-100mesh) 3.0 | wall-coated open tubular 0.25 | wall-coated open tubular | open tubular 0. | tubular 0. | "Coated open cuburar
w/w on Gas-Chrom Q (100-120 mesh) 2. | wall-coated open tubular 0.5 | | | | COLUMN MATERIAL | ester
glass | qlass | ָּהָ
מַּ | c cot f | glass | quartz glass | quartz glass
quartz glass | glass | glass | glass
glass | glass | glass | glass | glass | glasa | glass | מ מייני | glass | glass | glass | grass | glass | 1 | glasa | glass | quartz glass
quartz glass | กาลรูย | glass | ! | quartz glass | 7 | geste diam | | | COLUMN STATIONARY
ORIGIN PHASE | diethoxyethyl
OV-1 | l, diethyl ester OV-1 | din | l, dioctyl ester | | Me silicone | DB-1
Me silicone | ov-1 | OV-1 | OV-1/SE-30
OV-1 | ov-1 | alpha-
OV-1 | e, alpha-
OV-1 | OV-1 | 0V-1 | 0V-1 | ne
007-1 | | | 0V-1 | | 0V-1 | | OV-1 | trans-
OV-1 | Sci. SE-30
Me silicone | (vinylbenzene) | | SE-30 | SE-30 | -dime | 5-dimethvl | T CITIZETION O | | | Bebacic acid, | sebacic acid, | sebacic acid, | 1645
sebacic acid, | 2782
gecobarbitone | 1786 HP | simazine
1711
1722 HP | sitostenone
3215 | sitosterol
3105 | 3193 | 3290 | spinasterol,
3270 | spinasterone
3295 | stigmastanol | 32.90 | 3300 | stigmastanone | 33.15 | 3325 | 3395 | 3405
of ignosterol | 3234
3234 | stigmasterone | 3355 | atilbene, tr
1755 | strychnine
3058 J&W
3063 HP | styrene, (vi | | 0876 | 0880
0886 | styrene, 2,4
1080 | 1083
atvrene: 2.5 | ì | | LIT
REF | 8
14 | 14
14
8 | ఐ | 1.9 | 19 | 19 | 32 | 41 | 26 | 26 | 323 | 26 | 26 | 32
36 | 26 | 26 | 26 | ოო | 32 | 32 | 32 | 32 | 32 | |---|--|--|--------------------------|------------------|--|---|--------------------------------------|---|---------------------------------|------------------------------|--|----------------------------------|------------------------------|--|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------|---| | SAMPLE TYPE | standard
standard | standard
standard
standard | standard standard
standard
standard | standard | standard | standard
standard | standard | standard | standard | standard
standard | standard | standard | standard | standard | standard | | LEN CARRIER (m) GAS | 50 nitrogen
25 helium | 25 helium
25 helium
50 nitrogen | 50 nitrogen | | | | 100 helium | 15 helium | 1.8 nitrogen | 1.8 nitrogen | 50 helium
100 helium
50 helium | 1.8 nitrogen | 1.8 nitrogen | 100 helium
1.5 nitrogen | 1.8 nitrogen | 1.8 nitrogen | 1.8 nitrogen | 50 helium
50 helium | 100 helium | | (mm) | 0.20 | 0.50
0.50
0.20 | 0.20 | | | | 0.5 | 0.32 | (80-100mesh) 2.00 | (80-100mesh) 2.00 | 0.3
0.5
0.3 | (80-100mesh) 2.00 | (80-100mesh) 2.00 | 0.5
lesh) 2.4 | (80-100mesh) 2.00 | (80-100mesh) 2.00 | (80-100mesh) 2.00 | 0.3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | COLUMN TYPE | wall-coated open tubular
wall-coated open tubular | wall-coated open tubular wall-coated open tubular wall-coated open tubular | wall-coated open tubular | 25%w/w on Celite | 25%w/w on Celite | 25%w/w on Celite | wall-coated open tubular | wall-coated open tubular | 5% on Chromaton N AW HMDS (8 | 5% on Chromaton N AW HMDS (8 | bonded phase
wall-coated open tubular
bonded phase | 5% on Chromaton N AW HMDS (8 | 5% on Chromaton N AW HMDS (8 | wall-coated open tubular
Chromosorb W DCMS (100-120 mesh) | 5% on Chromaton N AW HMDS (8 | 5% on Chromaton N AW HMDS (8 | 5% on Chromaton N AW HMDS (8 | bonded phase
bonded phase | wall-coated open tubular | | COLUMN MATERIAL | quartz glass
glass | glass
glass
quartz glass | quartz glass | | | | glass | (Mustard)
quartz glass | glass | glass | ane)
quartz glass
glass
quartz glass | glase | glass | omethane)
glass
glass | glass | glass | glass | quartz glass
quartz glass | glass | glass | glass | glass | glass | | ILTP COLUMN STATIONARY INDEX ORIGIN PHASE | , 2,6-dimethyl
SE-30
SE-30 | styrene, alpha-methyl
0963 SE-30
0964 SE-30
0968 SE-30 | e, beta-methyl
SE-30 | | succinic acid, diethyl ester
1139 SE-30 | succinic acid, dimethyl ester
1002 SE-30 | sulphide, benzylmethyl
1147 SE-30 | <pre>sulphide, bis(2-chloroethyl) 1124 J&W SCI DB-1</pre> | sulphide, dibutyl
1057 SE-30 | | | sulphide, diheptyl $_{ m SE-30}$ | | sulphide, dimethyl (methylthiomethane)
0505 SE-30 glass
0509 SE-30 glass | | | | A A | | | | sulphide, methylpentyl
0910 SE-30 | sulphide, methylphenyl
1068
SE-30 | | LIT | 32 | ოო | 41 | 41 | 49 | 49 | 49 | 27 | 27 | 27 | 27 | | 27
27 | 27 | 27 | 2.7 | 27 | 27 | - | | 1.0 | | | 27 | 27 | 2.7 | 27 | 2.7 | | 27 | 2.7 | 30 |
-------------------------|--------------------------|--------------------------------|--------------------------|--------------------------|------------------|----------------------|----------------|---------------------------------|------------------------------|--------------------------|-----------------------|---|---|---------------------------------------|-----------------|----------------------------|----------------|-----------|---------------------------|------------------------------|---------------------------|----------------------------------|--------------|--------------------------|-------|-------------------------|-------------------|--------------------------|----------|--------------------------|----------------------------|--| | SAMPLE TYPE | standard | essential oil
essential oil | standard standard
standard | | standard
standard | standard | standard | atandard | standard | standard | standard | | standard | | standard | standard | | atandard | | standard | | standard | standard | standard
standard | | LEN CARRIER (m) GAS | 100 helium | 50 helium
50 helium | 15 helium | 42 helium | 42 helium | | 42 helium
4 helium | | 50 hydrogen
42 helium | 50 hydrogen | 42 helium | 50 hydrogen | | 42 helium | 4 belium | | 4 helium | | 4 helium | 50 hydrogen | 42 | 50 bydrogen | 42 | 42 helium | | 42 helium | 42 helium | 4 helium
25 nitrogen | | OI (mm) | 0.5 | 0.30 | 0.32 | 0.32 | 0.25 | 0.25 | 0.25 | 0.30 | 0.30 | 0.30 | 3.00 | | 0.30 | 0.30 | 0.30 | 30 | 0.30 | 0.30 | 3.00 |)
• | 3.00 | | 3.00 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | | 0.30 | 0.30 | 3.00 | | | | | | | | | | | | | (80-100meab) | / | | | | | | | (80-100meah) | (| (80-100mesh) | | (80-100mesh) | | | | | | | | | (80-100mesh) | | COLUMN TYPE | wall-coated open tubular | bonded phase
bonded phase | wall-coated open tubular | wall-coated open tubular | bonded phase | bonded phase | bonded phase | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | open tubular | | wall-coated open tubular wall-coated open tubular | | open | religing and postson-flori | oben | | 3% w/w on Chromosorb W HP | THE WATER CONTROL TO MAN | 3% w/w on Chromosorb W HP | wall-coated open tubural | | wall-coated open tubular | oben | reludut meno betechnist | coated open tubul | wall-coated open tubular | 4 | wall-coated open tubular | wall-coated open tubular | 3% w/w on Chromosorb W HP wall-coated open tubular | | COLUMN MATERIAL | glass | quartz glass
quartz glass | | quartz glass | quartz glass | | quartz glass | ester
glass | ester
glass | cer
qlass | glass | 2 2 2 | glass | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | glass
glass | :
: | glass
glass | glass | ester | grass
ter | glass | glass
For 2.3.5.6-tetrachloro | 9 , 9 | ter
Alaga | glass | er | glass | Vl ester ester | yl ester | glass | glass | glass
quartz glass | | STATIONARY
PHASE | ۰ 0 | | B-1 | ethyl
DB-1 | analog
DB-1 | sulfoxide
l | sulfoxide
L | acid, butyl octyl e
SE-30 gl | acid, decyl ethyl e
SE-30 | acid, dibutyl ester | | OV-1
ocid diethvlester | | ptyl es | OV~101
SE-30 | xyl est | OV-101 g | | sobutyl | ov~1
acid, dimethyl ester | 7-1 | OV-101 glas | 9 | acid, dipentyl ester | | opyl es | SE-30 | :yl pent | hyl unde | | acia, nonyi propy
SE-30 | 4
OV-1
SE-30 | | LTP COLUMN INDEX ORIGIN | sulphide, meth | sulphonamide,
1710 Hall | ne, di
J£W | sulphoxide, dim | supracide oxygen | system thiol in 1706 | | thalic | thalic | terephthalic a | 2060 | 2066
+ 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 | | thalic | 2661
2665 | thalic | 2460 | 2469 | thalic | | | | rerephrhalic | thalic | 2261 | chalic | 1850 | thalic | thalic | | terephthalic a | terphenyl, l, 4
2208
2208 SGE | | LIT | 30 | | 13 | 4 | 23 | 44 | ഹനന | 44 | 40 | 3
5
40 | 15 | 15 | 15 | 15 | 19 | 19 | 4 | 8 | 36 | 23 | 47 | 53 | |-------------------------|--------------------------|--|---|----------------------|----------------------------|------------------------|--|-------------|--------------------------|--|--------------------------|--------------------------|---------------------------|--------------------------|--|--------------------------------|-----------------------|---------------------------------|---------------------------------------|--------------------------------|-------------------------|---| | SAMPLE TYPE | standard | standard
standard
standard | standard | standard | standard | tap water | tap water
standard
essential oil | tap water | standard | essential oil
tap water
standard | standard | standard | standard | standard | food
standard | standard
standard | standard | standard | standard | standard | standard | standard | | LEN CARRIER (m) GAS | 25 nitrogen | 4 helium
4 helium
4 helium | 6.1 nitrogen | | 15 helium | 25 helium | 50 helium
50 helium | 25 helium | 50 nitrogen | 50 helium
50 nitrogen | | | | | 80 nitrogen | | | 108 helium | 1.5 nitrogen | 15 helium | 25 helium | 2 nitrogen | | ID L | 0.33 | 3.00
3.00
3.00 | 3.20 6 | | 0.25 | | 0.30 | | 0.2 | 0.30 | | | | | 0.28 | | | 0.25 | 2.4 | 0.25 | 0.20 | χ, | | COLUMN TYPE | wall-coated open tubular | 3% w/w on Chromosorb W HP (80-100mesh)
3% w/w on Chromosorb W HP (80-100mesh)
3% w/w on Chromosorb W HP (80-100mesh) | 10%w/w on Chromosorb W HMDS (60-80mesh) | | wall-coated open tubular | | wall-coated open tubular
bonded phase
bonded phase | | wall-coated open tubular | bonded phase
wall-coated open tubular
wall-coated open tubular | wall-coated open tubular
25%w/w on Celite | icace)
25%w/w on Celite | state) | wall-coated open tubular | Chromosorb W DCMS (100-120 mesh) | wall-coated open tubular | | dimethyl-1,3,5- (dazomet)
glass 3% w/w on Chromosorb W HP (80-100mesh) | | COLUMN MATERIAL | quartz glass | glass
glass
glass | stainless steel | glass | quartz glass | | glass
quartz glass
quartz glass | | quartz glass | quartz glass
glass
quartz glass | stainless steel | stainless steel | stainless steel | stainless steel | | eer, (methyl myristate)
25% | yrass
glass | glass | glass | quartz glass | | | | N STATIONARY
N PHASE | tro-p-
SE-30 | ed isomers)
OV-1
OV-1
OV-1 | ha-
SE-30 | OV-1/SE-30 | i. SE-30 | Me silicone | o SP-2100
OV-1
OV-1 | Me silicone | Me silicone | 1-chloro
CV-1
co SP-2100
Me silicone | 2, 6, 10-trimethyl SE-30 | 2-methyl
SE-30 | 3,7,11-trimethyl
SE-30 | | acid, ethyl ester
OV-101
SE-30 | acid, methyl ester, SE-30 | aci | × 0V-101 | dimetnyi
SE-30 | i. SE-30 | Me silicone | thiadiazine-2-thione, tetrahydro-3,5-
1676 PEC SE-30 quartz | | | <u> </u> | terpineol (mixed
1127
1170
1183 | terpineol, alpha-
1205 | testosterone
2620 | tetracaine
2197 J&W Sci | tetracosane
2400 HP | tetradecanal
1593 Supelco
1593 Hall
1593 Hall | | | tetradecane, 1-
1662 Hall
1662 Supelco
1674 | tetradecane, 2,
1555 | ecane, | | tetradecane, 3
1469 | | ecanoic | tetradecanoic
1859 | tetradecene, 1-
1389 Quadrex | tetrasulphide, dimetnyl
1202 SE-30 | thenyldiamine
1963 J&W Sci. | theophylline
1962 HP | thiadiazine-2-
1676 PEC | | LIT
REF | 28 | - | 23 | 49 | 49 | 49 | m | 323 | 32 | 32
32 | 32 | 32 | 32 | 32 | 32 | 32 | 23 | 23 | 25 | 25 | 49 | 28 | 28 | 28 | 28 | 28 | |--|--|--|--------------------------------------|---|------------------------|-------------------------|------------|--|----------------|----------------------------------|--|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------|------------------|------------------|---|------------------|------------------| | SAMPLE TYPE | standard
standard | standard | standard | standard | standard | standard | standard | standard
standard | stạndard | standard
standard | standard
tap water | standard | ID LEN CARRIER (mm) (m) GAS | 0.32 50 hydrogen
3.00 4 helium | 3.00 4 helium | 0.25 15 helium | 0.25 15 helium | 0.25 15 helium | 0.25 15 helium | 3 50 | 0.3 50 hellum
0.5 100 hellum | 0.5 100 helium | 0.5 100 helium
0.5 100 helium | 0.5 100 helium | 0.25 15 helium | 0.25 15 helium | 3.00 3.0 | 3.00 3.0 | 0.25 15 helium | 0.32 50 hydrogen | | COLUMN TYPE | bonded phase
3% w/w on Chromosorb W HP (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 1-coated open tubular | ester (avauen 11, utaliate)
ided phase | bonded phase | bonded phase | phase | bonded phase
wall-coated open tubular | tubular | wall-coated open tubular | wall-coated open tubular
wall-coated open tubular | wall-coated 1% w/w on Gas-Chrom Q (100-120mesh) | 1% w/w on Gas-Chrom Q (100-120mesh) | bonded phase | | COLUMN MATERIAL | quartz glass
glass | glass | quartz glass wal | duartz glass | quartz glass | quartz glass | glas | quartz glass
glass | glass |
glass
glass | glass
glass | glass | glass | glass | glass | glass | quartz glass | quartz glass | glass | glass | quartz glass | | LIP COLUMN STATIONARY INDEX ORIGIN PHASE | thianaphthene
1161 SAC OV-1
1200 OV-1 | thianthrene
1901 OV-1 | thiethylperazine 3210 Jaw Sci. SE-30 | | thiodan 1
2087 DB-1 | thiodan 11
2187 DB-1 | ene
SAC | 0647 SAC OV-1
0650 SE-30 | | | Ο. | | | | | thiophene, 3-methylthio
1060 SE-30 | thioridazine
3080 J&W Sci. SE-30 | thonzylamine
2172 Jaw Sci. SE-30 | tigogenin
3260 OV-1 | tigogenone
3295 OV-1 | 2159 DB-1 | ເກ | Ω | columns, 2 currors
tologis 2 chlorodenitro | | (C) | | LIT
REF | 28 | 28 | 28 | ιΩ | 28 | 28 | 28 | 1
34 | 28 | 28 | 28 | 28 | 28 | 28 | 28
49 | 49 | 1 | 28 | 4.
0 | 4 | ď | 7 | 53 | 49 | 78 | 7° | , - 1 | |--|----------------------|------------------------------|------------------|-------------------------------|------------------------------|-----------------------------------|----------------------------------|--|--------------|-----------------------|--------------|-----------------------|--------------|--------------|---|----------------------------------|--|---------------------------|-------------------------------|---|---------------------------------|----------------------------|-----------|------------------------------|--------------------------------------|--|--| | SAMPLE TYPE | standard | standard | standard | tap water | standard | standard | standard | standard
standard | standard | standard | standard | standard | standard | standard | standard
standard | standard | standard | standard | standard | standard | 7. co | standard | standard | standard | standard | standard | standard | | LEN CARRIER (m) GAS | 50 hydrogen | 50 hydrogen | 50 hydrogen | | 50 hydrogen | 50 hydrogen | 50 hydrogen | 4 helium
2.9 | 50 hydrogen br>15 helium | 15 helium | 4 helium | 50 hydrogen | 15 helium | ctrol)
15 helium | | 4 | | 15 helium | 50 hydrogen | CT | 4 helium | | OID (mm) | 0.32 | 0.32 | 0.32 | | 0.32 | 0.32 | 0.32 | 3.00 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.25 | 3.00 | 0.32 | 0.25 | x, Fol
0.25 | 33 | 3.00 | 20.5 | 0.25 | 0.32 | | 3.00 | | COLUMN TYPE | bonded phase | bonded phase | bonded phase | wall-coated open tubular | bonded phase | bonded phase | . bonded phase | 3% w/w on Chromosorb W HP (80-100mesh) 3% on Chromosorb W HMDS (80-100 mesh) | bonded phase | | alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-dipropyi-p- (trifluralin)
OV-1 quartz glass bonded phase
DB-1 quartz glass bonded phase | bonded phase | 3% w/w on Chromosorb W HP (80-100mesh) | chloride)
hondad nhasa | file.
- (sumitol)
phase | lethylamino)-6-ethylamino-1,3,5- (cyanazine, Bladex, Fortrol)
glass bonded phase | -methylethyl)-1,3,5- (atrazine) | comosorb W HP | | | | ded phase
(simazine) | 3% w/w on Chromosorb W HP (80-100mesh) | | COLUMN MATERIAL | quartz glass | quartz glass | quartz glass | glass | 5 | (benzai chioride)
quartz glass | chloride)
quartz glass | & &
& & | quartz glass | rifluoro-2,6-dın:
quartz glass
quartz glass | partz | s)
qlass | anuric | amino)
glass | ·l-methylethylamin
quartz qlass | 1-N'-(1 | quartz glass
qlass | | quartz glass
quartz glass | quartz glass | glass
iethyl-1, | glass | | LTP COLUMN STATIONARY INDEX ORIGIN PHASE | 4-chloro
SAC OV-1 | 4-chloro-Z-nitro
SAC OV-1 | 4-chloro-3-mitro | 4-isobutyl
Supelco SP-2100 | 6-chloro-2-nitro
SAC OV-1 | chioro | alpha-chloro (benzyl
SAC OV-1 | utylated hydroxy 18c
OV-1
SE-30 | Z-chloro-p- | 3-chioro-o-
c OV-1 | 4-chloro-o- | 5-chioro-o-
C OV-1 | c contoro-m- | | toluidine, alpha,alpha,alpha-t
1660 SAC OV-1
1668 DB-1 | torak oxygen analog
2482 DB-1 | triacetin (glyceryl triacetate) | ne, 2,4,6-trichloro-1,3 | - (sec-butylamino) -4
DB-1 | triazine, 2-chloro-4-(1-cyano-1-methy | ne-2,4-diamine, 2-chloro | 1699 SAC OV~1
1705 OV-1 | PEC SE-30 | - | ne-2,4-diamine, 6-chloro
SAC OV-1 | 1735 UB-1 quartz triazine-2,4-diamine, 6-chloro-N,N'-d | | | LIT | 4 | 49 | 53 | 4 | . 4. | - | 1 | 7 | 12 | 12 | 10 | 12 | 12 | 12 | 10 | 10 | 10 | 12 | 10 | 10 | 12 | 12 | 10 | - | 12 | 12 | 10 | |--|---------------------------------|----------|---|--|---|---|--|--|--|--------------------------|---|---|---|--|--|--|---|-------------------------------|--------------------------|---|---|--------------------------|---|--|--------------------------|--------------------------|---| | SAMPLE TYPE | standard | standard | standard
standard | standard | CARRIER
GAS | | helium | nitrogen | | | 4 helium | 4 helium | 4 helium | nitrogen | nitrogen |) nitrogen | nitrogen | o nitrogen | initrogen | 5 nitrogen 25 nitrogen | 4 helium | 25 nitrogen | 5 nitrogen | 25 nitrogen standard | | (m) | | 5 15 | 5 2 | | | | | | 0 25 | 0 25 | 0 25 | 0 25 | 0 25 | 0 25 | 0 25 | 0 25 | 0 25 | 0 25 | 0 25 | 0 25 | 0 25 | 0 25 | | | | 10 25 | | | OI
(mm) | | 0.25 | <u>-</u> | | | 3.00 | | 3.00 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 3.00 | 0.30 | 0.30 | 0.30 | | COLUMN TYPE | | | -ethyl-6-(methylfnio)-1,3,3-, (terbucryne) 3% w/w on Chromosorb W HP (80-100mesh) | <pre>1) -6-(methylthio)-1,3,5-, (ametryne)</pre> | /SE-30 glass
N-methyl-N'-(1-methylethyl)-6-(methylthio)-1,3,5-, (desmetryne) | 71)-1,3,5- (Dyrene) 3% w/w on Chromosorb W HP (80-100mesh) | -1,3,5- (anilazine)
3% w/w on Chromosorb W HP | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | wall-coated open tubular | wall-coated open tubular | | LTP COLUMN STATIONARY COLUMN MATERIAL INDEX ORIGIN PHASE COLUMN MATERIAL | ne-2,4-diamine, N,N'-bis(1-met) | glass | ne-2,4-diamine, N-(1,1-dimethylethyl)-N'
PEC SE-30 quartz glass | OV-1/SE-30
ne-2,4-diamine, N-ethyl | OV-1,
ne-2,4-diamine, | 1795 OV-1/SE-30 glass triazine-2-amine, 4, 6-dichloro-N-(2-chlorophenyl)-1,3,5- | -dichlorc | | tribromoacetic acid, 1,1-dimethylpropyl ester
1428 SGE SE-30 quartz glass | noacetic
SGE | noacetic acid, 1-methyl-3-buter
SGE SE-30 quartz | tribromoacetic acid, 1-methylbutyl ester
1458 SGE SE-30 quartz glass | noacetic acid, 1-methylpropyl e
SGE SE-30 quartz | tribromoacetic acid, 2-methylpropyl ester
1387 SGE SE-30 quartz glass | tribromoacetic acid, 2-propenyl ester
1308 SGE SE-30 quartz glass | tribromoacetic acid, 2-propynyl ester
1322 SGE SE-30 quartz glass | tribromoacetic acid, 3-butenyl ester
1405 SGE SE-30 quartz glass | 3-methylbutyl es
30 quartz | 4-pentenyl ester | tribromoacetic acid, cis-3-hexenyi ester
1629 SGE SE-30 quartz glass | tribromoacetic acid, dimethylethyl ester
1297 SGE SE-30 quartz glass | Ø. | tribromoacetic acid, trans-3-hexenyl ester
1623 SGE SE-30 quartz glass | tributyrin (glyceryl tributyrate)
1552 OV-1 glass | SE-30 quartz glas | | trichloroacetig acid, 1-metnyi-3-butenyi ester
1157 SGE SE-30 quartz glass | | LIT
REF | 12 | 12 | 12 | 10 | 10 | 10 | 12 | 10 | 10 | 12 | 12 | 10 | 44 | Ŋ | rt t | • | 40 | 15 | 15 | 2 | 23 | 23 | 23 | ოო | 23 | 1 | 56 | 23 | |----------------------------|-------------------------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------|--------------------------|--------------------------|-----------------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------|----------------------|-------------------------|---------------------------------------|----------|--------------------------|--------------------------|-----------------------------|-------------------------------|-----------------------------------|----------------------------------|----------------------------|---|---------------------------------|---------------------------|-------------------------|-------------------------------| | SAMPLE TYPE | standard tap water | standard | tap water | | standard standard
essential oil | standard | standard | standard |
ßtandard | | LEN CARRIER (m) GAS | 25 nitrogen helium | 50 helium | 50 belium | | 50 nitrogen | | | 108 helium | 15 helium | 15 helium | 15 helium | 50 helium
50 helium | 15 helium | 4 helium | 12 | 15 helium | | OI (mm) | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | | 0.30 | 0.30 |) | 0.2 | | | 0.25 | 0.25 | 0.25 | 0.25 | 0.30 | 0.25 | (80-100mesh) 3.00 | 0.20 | 0.25 | | COLUMN TYPE | wall-coated open tubular | bonded phase | wall-coated open tubular bonded phase | | wall-coated open tubular bonded phase
bonded phase | wall-coated open tubular | 3% w/w on Chromosorb W HP | bonded phase | wall-coated open tubular | | COLUMN MATERIAL | Φ | | Z-methylpropyl ester
quartz glass | z-propenyi ester
) quartz glass | nyl ester
quartz glass | | duartz glass | 4-pentenyl ester
(quartz glass | quartz glass | | יס עו | -hexenyl ester
quartz glass | | quartz qlass | | ,
, | quartz glass | stainless steel | stainless steel | glass | quartz glass | quartz glass | quartz glass | ,J, (Palaluenyus)
quartz glass
quartz glass | quartz glass | glass | quartz glass | quartz glass | | STATIONARY
PHASE | acid, 1-methylbutyl
SE-30 quart: | | | ac1d,
SE-3(| acid,
SE-3(| acid,
SE-3(| | • | | _ | acid, metnyle
SE-30 | acıd, trans-3-hexenyl
SE-30 quartz | Me silicone | ov-1 | SP-2100
OV-1 | | Me silicone | SE-30 | 3, /, 11-trimetnyi
SE-30 | OV-101 | SE-30 | SE-30 | SE-30 | ov-1 | SE-30 | OV-1 | Me silicone | SE-30 | | LTP COLUMN
INDEX ORIGIN | | | | | | | | | | | | acetic
GE | tricosane
2300 HP | tridecanal
1492 Hall | | ē | 1658
tridecane 2 6 1 | | tridecane, 3,7,1
1480 | tridecene, 1-
1289 Quadrex | trifluroperizine
2641 J&W Sci. | trihexyphenidyl
2211 J&W Sci. | trimethoprim 2514 J&W Sci. | 11040 Hall OV-1 quartz 1040 Hall OV-1 | tripelennamine
1949 J&W Sci. | tripnenylamine
2055 | triphenylene
2405 HP | triprolidine
2224 Jaw Sci. | | LIT | - | 41 | 32 | 3.33
3.00
3.00
3.00 | , - | 2.1 | - | 21 | ī, | 40 | 40 | 15 | 15 | 61 | 28
19 | ις | 11 | 32 | 49 | 2.8
4.9 | 53 | 4 | 49 | 19 | |---|--|--------------------------|------------------------------------|--|--|-------------------------------------|--|---|--------------------------|--------------------------|---|--------------------------|--------------------------|---|----------------------------------|-----------------------------------|--------------------------|--------------------------|--|---|---|-----------------|--------------|------------------| | SAMPLE TYPE | standard | standard | standard | tap water
standard
standard | standard | standard | standard | standard | tap water | standard | standard | standard | standard
standard | standard | standard v
standard | tap water | standard | standard
standard | standard | standard
standard | standard | standard | standard | standard | | LEN CARRIER (m) GAS | 4 helium | 15 helium | 100 helium | 2
1.5 nitrogen | 4 helium | 1.5 argon | 4 helium | 1.5 argon | | 50 nitrogen | 50 nitrogen | | 108 helium | 108 helium | 50 hydrogen | | 25 nitrogen | 100 helium
108 helium | 15 helium | 50 hydrogen
15 helium | 2 nitrogen | | 15 helium | | | OI (MI) | 3.00 | 0.32 | 0.5 | | 3.00 | 4.00 | 3.00 | 4.00 | | 0.2 | 0.2 | • | 0.25 | 0.25 | 0.32 | | 0.30 | 0.5 | 0.25 | 0.32 | ស | | 0.25 | | | COLUMN TYPE | 3% w/w on Chromosorb W HP (80-100mesh) | wall-coated open tubular | wall-coated open tubular | 15% w/w on Gas-Chrom Q (100-120 mesh) Chromosorb W DCMS (100-120 mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 10% w/w on Diatoport S (80-100mesh) | 3% w/w on Chromosorb W HP (80-100mesh) | 10% w/w on Diatoport S (80-100mesh) | wall-coated open tubular | bonded phase
25%w/w on Celite | wall-coated open tubular | wall-coated open tubular | | J-Y1) (notaton, notes, netwan)
bonded phase
(limpon) | bonded phase bonded phase | | 1 (chloroxuron) | bonded phase | 25%w/w on Celite | | COLUMN MATERIAL | glass | ı,
quartz glass | | quartz grass
glass | 7 | /ısııyı derivacive | glass | silyi derivative | glass | quartz glass | quartz glass | stainless steel | stainless steel
glass | glass | quartz glass | glass | quartz glass | glass
glass | quartz glass | quartz glass quartz glass | (1) - 1 - mec.noxy - 1 - me
quartz glass
Himethyl (monuron) | | quartz glass | | | LTP COLUMN STATIONARY
INDEX ORIGIN PHASE | OV-1 | UĮ. | Cisuipnide, dimerny.
0948 SE-30 | | | an, N-acetyl,
OV-1 | OV-1 | tyrosine, N-acetyl, trimethylsilyl
2129 OV-1 | b, 10-dimethy
SP-2100 | | undecane, 1-cniolo
1364 Me silicone
undecane 2 & 10-trimathul | | - | undecane, z-metny:
1165 Quadrex OV-101 | OV-1
SE-30 | undecanol
1288 Supelco SP-2100 | 1350 SGE SE-30 | | | 3 SAC OV-1 quartz glass OV-1 quartz glass OV-1 quartz glass |) 2-(4-blomo-3-chiolognemy1) 1 "mennoxy-1-metny1) NB PEC SE-30 quartz glass 3% 3-(n-chloropheny1)-1 1-dimethy1 (monuton) | | | 34 SE-30 | | IN | tripty
2224 | 1562 | 0948
0948 | 0948
0954
0972 | tryptar
1750 | tryptoj
2400 | tyramine
1405 | tyrosin
2129 | undecad
1430 | 1449 | 1364 | 1275 | undecal
1215
1216 | unde
11 | 1408 | unde
12 | 13. | 1088 | 1941 | 1903
1927 | 1408 | 1100 | 1895
1895 | 0884 | | 182 | |-----| | age | | LIT | 19 | 38 | - | 23 | | |--|--------------------|---|---|---------------------------------|--| | SAMPLE TYPE | standard | standard | standard | standard | | | LEN CARRIER (m) GAS | | 2 | 4 helium | 0.25 15 helium | | | ID (mm) | | 2.0 | 3.00 | 0.25 | | | COLUMN TYPE | 25%w/w on Celite | 15% w/w on Gas-Chrom Q (100-120 mesh) 2.0 | 3% w/w on Chromosorb W HP (80-100mesh) 3.00 | wall-coated open tubular | | | COLUMN MATERIAL | | | glass | quartz glass | | | LTP COLUMN STATIONARY INDEX ORIGIN PHASE | hyl ester
SE-30 | SE-30 | xanthine, 3-isobutyl-1-methyl
2150 OV-1 | SE-30 | | | COLUMN | acid, met | trile | a, 3-isobu | zolamine
2193 J&W Sci. SE-30 | | | LTP | valeric
0808 | valeroni
0745 | xanthine
2150 | zolamine
2193 | | ## **BIBLIOGRAPHY** - C. Moffat, "Gas-liquid chromatographic retention indices of 296 non-drug substances on SE-30 or OV-1 likely to be encountered in toxicological analysis." J. Chrom., 184, Ramsey, T. D. Lee, M. D. Osselton and A. Ь. - C. Hayes, Jr. and E. W. Pitzer. "Characterizing petroleum- and shale-derived jet fuel distillates via temperature-programmed Kovats indices." J. Chrom., 253, 179-198, (1982). Waggott. WRC, Stevenage Laboratory. Unpublished work. E. Ardrey and A. C. Moffat. "Gas-liquid chromatographic retention indices of 1318 substances of toxicological - A A ω. 4. - interest on SE-30 or OV-1 stationary phase." J. Chrom., 220, 195-252, (1981). G. Melton, W. E. Coleman, R. W. Slater, F. C. Kopfler, W. K. Allen, T. A. Aurand, D. E. Mitchell, S. J. Voto, S. V. Lucas and S. C. Watson. In Advances in the Identification & Analysis of Organic Pollutants in Water, Ann Arbor Science Publishers Inc. Edited by L. H. Keith. Recalculated from data in "Chapter 36; Comparison of Grob closed-loop stripping analysis with other trace organic methods." 2, 618-628, (1980). ъ. - Ä - 면 . - °. € - Magott. WRC, Stevenage Laboratory, Organic compounds identified in the atmosphere of a pump-house. Report to the Central Regional Council, Scotland. Unpublished work, (1984). Lemberkovics. Recalculated from data in "Gas chromatographic characterization of frequently occurring monoterpenes in essential oils." J. Chrom., 286, 293-300, (1984). Bredach. "Retention indices of hydrocarbons on SE-30." J. High Res. Chrom. & Chrom. Commun., 5, 325-328, (1982). Rooppel, M. De Bortoli, H. Schauenburg and H. Vissers. In Analysis of Organic micropollutants in Water, Proceedings of the Second European Symposium held in Killarney (Ireland), November 17-19, 1981. D. Reidel Publishing Company. Edited by A. Bjorseth and G. Angeletti. "The determination of linear PTGC retention indices ъ. Н - . H 10. - for use in environmental organics analysis." 133-138, (1982). O. O. Korhonen. "Gas-liquid chromatographic analyses, XXVI. Separation of unsaturated alcohols and their acetyl and haloacetyl derivatives on capillary columns coated with SE-30 and OV-351." J. Chrom., 288, 329-346, (1984). O. O. Korhonen. Recalculated from data in "Gas-liquid chromatographic analyses, XXIII. Separation of primary Cl Cl2 straight-chain alkanols and Cl Cl2 n-alkyl acetates, monobromoacetates, dibromoacetates and tribromo-11. - acetates. "J. Chrom., 287, 399-406, (1984). I. O. O. Kothonen. "Gas-liquid chromatographic analyses, XXV. Branched-chain C3 C5 alkyl esters of halogenated acetic acids." J. Chrom., 288, 51-69, (1984). P. A. Hedin, A. C. Thompson and R. C. Gueldner. "Application of a sequential reduction regimen to fractionation of essential oils." Anal. Chem. 44, 1254-1257, (1972). 12. - 13. - Svob and D. Deur-Siftar. "Kovats retention indices in the identification of alkylbenzene degradation products." J. Chrom., 91, 677-689, (1974). F. Shlyakhov, R. I. Koreshkova and M. S. Telkova. "Gas chromatography of isoprenoid alkanes." J. Chrom., 104, ä 14. - 15. - N. Caroff, Y. Bahurel and J. Veron. Recalculated from data in J. Chrom., 4, 234, (1966). N. Little,
W. A. Dark, P. W. Farlinger and K. J. Bombaugh. Recalculated from data in J. Chromat. Sci., 8, 647, 337-349, (1975). Ą. ب. . 16. - (1970). - 18. 19. - . ы 20. - Van den Dool and P. D. Kratz. "Generalisation of retention index system including linear temperature programmed gas-liquid partition chromatography." J. Chrom., 11, 463-471, (1963). Hoffman, A. Milling Jr. and D. Parmelee. "Infrared, nuclear magnetic, and ultraviolet spectral and gas chromatographic properties of some aromatic trimethylsilyl derivatives." Anal. Biochem., 32, 386-395, (1969). F. Coward and P. Smith. J. Chrom., 45, 230, (1969). A. Zamureenko, N. A. Kluyev, L. B. Dmitriev and I. I. Grandberg. "Gas-liquid chromatography-mass spectrometry in the analysis of essential oils." J. Chrom., 303, 109-115, (1984). - 21. 22. - H. Anderson and D. T. Stafford. "Applications of capillary gas chromatography in routine toxicological analyses." J. High Res. Chrom. & Chrom. Commun., 6, 247-254, (1983). Goebel. "Gas chromatographic identification of low boiling compounds by means of retention indices using a programmable pocket calculator." J. Chrom., 235, 119-127, (1982). G. Smith and C. J. W. Brooks. "Application of cholesterol oxidase in the analysis of steroids." J. Chrom., 101, Σ. 23. - χ. 24. - Ą. - V. Golovkin and R. V. Golovnya. "GC behaviour of symmetrical n-dialkyl sulphides under isothermal ij - 27. - and temperature programming conditions." J. High Res. Chrom. & Chrom. Commun., 4, 6-10, (1981). M. P. Friocourt, F. Berthou, D. Picart, Y. Dreano and H. H. Floch. "Glass capillary column gas chromatography of phthalate esters." J. Chrom., 172, 261-271, (1979). R. W. Davies. "Identification of organic pollutants using linear temperature programmed retention indices." Progress Report to the Water Research Centre. Project 540 9811. May 1984. 28. - ٧. 29. - Pacakova and I. Nemec. "Gas chromatographic, spectrophotometric and electrochemical behaviour of substituted striazines." J. Chrom., 148, 273-281, (1978). O. O. Korhonen and M. A. Lind. "Gas-liquid chromatographic analyses. XXXIV Separation and retention increments of some nitrated polynuclear aromatic hydrocarbons on a low-polarity (SE-30) column." J. Chrom., 322, 71-81 (1985). 30. - S. Mihara and N. Enomoto. "Calculation of rention indices of pyrazines on the basis of molecular structure." 31. - Ξ. 32. - J. Chrom., 324, 428-430, (1985). Wastewater. Water Res., 19, 597-603, (1985). Engewald, L. Wennrich and E. Ritter. "Molecular structure and retention behaviour. XII. Retention behaviour . 3 33. - alkylnaphthalenes by gas-liquid and by gas-solid chromatography." J. Chrom., 174, 315-323, (1979). Grzybowski, H.Lamparczyk, A. Masal and A. Radecki. "Relationship between the retention indices of phenols on polar and non-polar stationary phases." J. Chrom., 196, 217-223, (1980). Berthou and M. P. Friocourt. "Gas chromatographic separation of diastereometic isoprenoids as molecular markers ٦, 34. - . [24 35. - of ill pollution." J. Chrom., 219, 393-402, (1981). W. Hillen and R. L. Werner. Note "Correlation of retention index data for dimethyl polysulphides, polyselenides and related thiaselena-alkanes." J. Chrom., 79, 318-321, 1973. G. Johansen and L. S. Ettre. "Retention index values of hydrocarbons on open-tublar columns coated with methylsilicone liquid phases." Chromatographia, 15, 625-630, (1982). ä 36. - - J. ż 37. 38. - Winskowski. "Gas chromatographic identification of compounds from retention indices and by different detectors." Chromatographia, 17, 160-165, (1983). Buchman, G. Y. Cao and C. T. Feng. "Structure assignment by retention index in gas-liquid radiochromatography of substituted cyclohexenes." J. Chrom., 312, 75-90, (1984). Yasuhara, M. Morita and K. Fuwa. "Temperature-programmed retention indices of 221 halogenated organic compounds with 1-bromoalkanes as references." J. Chrom., 328, 35-48, (1985). ö 39. - A. 40. - A. D'Agostino and L. R. Provost. "Gas chromatographic retention indices of chemical warfare agents and simulants." J. Chrom., 331, 47-54, (1985). Osmialowski, J. Halkiewicz, A. Radecki and R. Kaliszan. "Quantum chemical parameters in correlation analysis ч 41. - × 42. - of gas-liquid chromatographic retention indices of amines." J. Chrom., 346, 53-60, (1985). Savenhed, H. Boren and A. Grimval. Recalculated from data in Ref. 40. "Stripping analysis and chromatographic sniffing for the source identification of odorous compounds in drinking water." J. Chrom., 328, 219-231, ĸ. 43. - Nicashi, N. H. Pilkington, A. Otusuki and K. Fuwa. "Occurrence of chlorinated polynuclear aromatic hydrocarbons in tap water." Environ. Sci. Technol., 19, 585-590, (1985). Wang and Y. Sun. "Correlation of retention indices obtained with two temperature programmes." J. Chrom., 330, Ξ. 44. - 167-171, (1985). Ξ. 45. - Į. 46. - containing drugs and metabolites of toxicological interest analysed on methyl silicone capillary columns. Shibamoto, Y. Kamiya and S. Mihara. "Isolation and identification of volatile compounds in cooked meat: Sukiyaki." J. Agic. Food Chem. 29, 57-63, (1981). Lora-Tamayo, M. A. Rams and J. M. R. Chacon. "Gas chromatographic data for 187 nitrogen or phosphorus ö 47. - J. Chrom. 374, 73-85, (1986). E. Wells, M. J. Gillespie and A. E. A. Porter. "Dichlorobenzyl alkyl ether homologs as retention index markers and internal standards for the analysis of environmental samples using capillary gas chromatography." J. High Res. Chrom. & Chrom. Commun., 8, 443-449, (1985). ۵. 48. ++++++++++++++++ 50. 49. G. L. Hall, W. E. Whitehead, C. R. Mourer and T. Shibamoto. "A new gas chromatographic retention index for pesticides and related compounds." J. High Res. Chrom. & Chrom. Commun., 9, 266-271, (1986). I. O. O. Korhonen. "Gas-liquid chromatographic analyses. XXVII - Capillary column studies of chlorinated anisoles." J. Chrom., 294, 99-116, (1984). I. O. O. Korhonen. "Gas-liquid chromatographic analyses. XIV - Retention behaviour of Cl-C12 n-alkyl esters of benzoic, 4-nitrobenzoic and 3,5-dinitrobenzoic acids on SE-30 and OV-351 capillary columns." J. Chrom., 356, 285-299, (1986). I. O. O. Korhonen. "Gas-liquid chromatographic analyses. XLVII - Retention increments of some lower saturated branched-chain, unsaturated and chlorinated esters of benzoic, 4-nitrobenzoic and 3,5-dinitrobenzoic acids on SE-30 and OV-351 capillary columns." J. Chrom., 360, 63-78, (1986). M. D. Osselton and R. D. Shelling. "Chromatographic identification of pesticides." J. Chrom., 368, 265-271, 51. 52. 53. H. Masuda and S. Mihara. "Use of modified molecular connectivity indices to predict retention indices of monosubstituted alkyl, alkoxy, alkythio, phenoxy and (phenylthio)pyrazines." J. Chrom., 366, 373-377, (1986). L. Weber. "Utilization of the Sadtler Standard RI System in micropollution analyses." J. High Res Chrom. & Chrom. Commun., 9, 446-451, (1986). J. Tuominen, R. Wickstrom and H. Pyysalo. Recalculated using data produced at the Water Research centre, Stevenage. "Determination of Polycyclic Aromatic Compounds by GLC-Selected Ion Monitoring (SIM) technique." J. High Res. Chrom. & Chrom. 54. 55. 56. J. E. Premecz and M. E. Ford. "Gas Chromatographic Separation of Substituted Pyridines." J. Chrom., 388, 23-25, 1987. 57. F. Morishita, S. Morimoto and T. Kojima. "Prediction of molecular structures of aza-arenes by retention indices and fluorescence spectra." J. High Res. Chrom. & Chrom. Commun., 9, 688-699, (1986). A. Llobera and A. Garcia-Raso. "Gas chromatographic behaviour of several p-quinones." J. Chromat, 393, 305-311 58. (1987). 59. S. Mihara and H. Masuda. "Correlation between molecular structures and retention indices of pyrazines." 60. J. R. Donnelly, W. D. Munslow, R. K. Mitchum and G. W. Sovocool. "Correlation of structure with retention index J. R. Donnelly, W. D. Munslow, R. K. Mitchum and G. W. Sovocool. "Correlation of structure with retention index for chlorinated dibenzo-p-dioxins." J. Chrom., 392, 51-63, (1987). W. L. Saxton. "Emergence temperature indices and relative retention times of pesticides and industrial chemicals determined by linear programmed temperature gas chromatography." J. Chrom., 393, 175-194, (1987). 61. 62.