WRc-NSF Ltd

An Investigation of Leaching from Flexible Rising Mains Leading from Borehole Pumps

Final Report to the Drinking Water Inspectorate

AN INVESTIGATION OF LEACHING FROM FLEXIBLE RISING MAINS LEADING FROM BOREHOLE PUMPS

Final Report to the Drinking Water Inspectorate

Report No: DWI 8102/3

August 2011

Authors: P J Jackson, H A James and I C Warren

Contract Manager: P J Jackson

Contract No: 14907-0

DWI Reference No: DWI 70/2/255

Contract Duration: November 2007-March 2009

Any enquiries relating to this report should be referred to the Contract Manager at the following address:

WRc-NSF Ltd, Unit 25, Robert Cort Estate, Britten Road, Reading, RG2 0AU.

Telephone: 01495 236260 Fax 01495 249234

AN INVESTIGATION OF LEACHING FROM FLEXIBLE RISING MAINS LEADING FROM BOREHOLE PUMPS

EXECUTIVE SUMMARY

Many water undertakers have used flexible rising mains as the preferred option to fixed piping systems for rising mains leading from borehole pumps. These flexible hoses are usually made from fabric-reinforced polyurethane. They offer several advantages over fixed installations.

Formerly such rising mains were treated as traditional materials under the requirements of Regulation 25(1)(c) of the Water Supply (Water Quality) Regulations 1989. Water undertakers would replace existing flexible rising mains with new lengths of flexible hose as required, on a like for like basis. Regulation 31 of the current Water Supply (Water Quality) Regulations 2000 (2001 in Wales) does not contain a comparable provision for the continued use of product on a 'traditional' basis. This has meant that water undertakers can no longer replace flexible rising mains on a like-for-like basis.

The former Committee for Products and Processes used in Public Water Supply (CPP) received and considered formal applications for approval of flexible rising mains, following the introduction of the new regulations. GC-MS general survey test results obtained from leaching tests undertaken on these products have shown persistent high concentrations of large numbers of unknown organic compounds over the three 72 hour extraction periods of the tests.

The general objective of this project was to analyse samples of water from two sites where flexible rising mains had been in use for some time to determine the quantity and nature of any leachates present. Following this initial sampling, the riser was replaced with a new one and the leachates were monitored over a period of weeks. This work was carried out in co-operation with two water undertakers.

Water companies were contacted to identify those that had flexible rising mains installed and that were willing to co-operate in the project. Two suitable sites were identified – one chalk aquifer and one greensand aquifer. Each of these sites had existing 152 mm (6 inch) diameter flexible rising mains of the same type and manufacturer.

At each of the two identified sampling sites the following general experimental protocol was followed.

- With the existing hose in service, a sample was taken under flowing conditions after one hour's flushing (as a 'control') then a further sample was taken following 72 hour's stagnation.
- The borehole was taken off line, i.e. no longer feeding the public water supply and the flexible riser was replaced with a new section of flexible hose.
- After flushing with water for one hour a control sample was taken. A stagnation period was imposed, after which a sample was taken immediately.

The flushing, stagnation and sampling was repeated to give a time-series over a period of 56 days.

• Samples were analysed for Total Organic Carbon and GC-MS general survey.

At both sites, only low levels of leaching were observed from the original liners that had been in use for many years. After the introduction of new liners, large numbers of unknowns were detected in the stagnation samples. These compounds tended to be present at lower concentrations or were undetectable in samples taken after flushing for 60 minutes.

The major unknowns were identified as a series of oligomers¹ differing in molecular weight by 72 mass units, the main compounds having molecular weights of 288, 360, 432, 504 and 576. Examination of mass spectra provided in earlier test reports on leaching from similar materials showed that these same compounds were present. These compounds are likely to be oligomeric cyclic ethers although their identities cannot be confirmed conclusively due to a lack of pure standards.

Overall there did not appear to be a difference in leaching characteristics between chalkand greensand-derived waters.

Chemicals were still detected in stagnation samples several weeks after the new liners were installed. This suggests that it would be not be practical or effective for the manufacturer to rinse the risers as part of the manufacturing process.

Concentrations of leached chemicals in samples taken after flushing tended to be low. This suggests that a suitable control method would be to flush newly installed risers, with the output going to waste, for 24 hours² prior to reconnection to the public water supply.

A compound intermediate between a monomer and a polymer, normally having up to about ten monomer units.

This time is based on the TOC die-away curve for flushing the riser at site F that had been stagnant for 28 days.

CON	NTENTS	Page
EXE	CUTIVE SUMMARY	I
LIST	OF TABLES	IV
LIST	OF FIGURES	IV
1. 1.1 1.2	INTRODUCTION Background Objectives	1 1 2
2. 2.1 2.2 2.3 2.4	METHODOLOGY Sample locations Sampling programme Sampling procedure Analysis	3 3 3 4 4
3. 3.1 3.2 3.3	RESULTS Site F Site A Identification of unknowns	7 7 14 21
4.	DISCUSSION	31
5.	CONCLUSIONS	33
REFI	ERENCES	35

APPENDICES

APPENDIX A DETAILED GC-MS RESULTS

		Page
LIST OF T	ABLES	
Table 3.1	Sample Schedule - Site F	8
Table 3.2	TOC results - Site F	9
Table 3.3	GC-MS results (μ g/l) - Site F	11
Table 3.4	Sample Schedule - Site A	15
Table 3.5	TOC results - Site A	16
Table 3.6	GC-MS results (µg/l) - Site A	17
LIST OF F	IGURES	
Figure 3.1	TOC data - Site F	10
Figure 3.2	TOC results for day 84 flushing experiment - Site F	10
Figure 3.3	TOC data - Site A	16
Figure 3.4	Mass chromatograms of unknowns	22
Figure 3.5	Mass spectrum of unknown m/z 288	23
Figure 3.6	Mass spectrum of unknown m/z 360	24
Figure 3.7	Mass spectrum of unknown m/z 432	25
Figure 3.8	Mass spectrum of unknown m/z 504	26
Figure 3.9	Unknowns in samples from Site F	27
Figure 3.10	Unknowns in samples from Site A	28

1. INTRODUCTION

1.1 Background

Many water undertakers have used flexible rising mains as the preferred option to fixed piping systems for rising mains leading from borehole pumps. These flexible hoses are usually made from fabric-reinforced polyurethane. They offer several potential advantages over fixed installations, including:

- lower initial costs;
- lower installation costs and greater convenience; and
- lower costs in operations such as raising the pump from the bottom of the borehole for maintenance.

Formerly such rising mains were treated as traditional materials under the requirements of Regulation 25(1)(c) of the Water Supply (Water Quality) Regulations 1989. Water undertakers would replace existing flexible rising mains with new lengths of flexible hose as required, on a like for like basis.

Regulation 31 of the current Water Supply (Water Quality) Regulations 2000 (2001 in Wales) does not contain a comparable provision for the continued use of product on a 'traditional' basis. This has meant that water undertakers can no longer replace flexible rising mains on a like-for-like basis. Where replacement is required, they have to change to approved fixed metallic (usually stainless steel) pipe installations with the concomitant increased cost implications, together with difficulties associated with installation and pump removal.

The former Committee for Products and Processes used in Public Water Supply (CPP) received and considered formal applications for approval of flexible rising mains, following the introduction of the new regulations. GC-MS general survey test results obtained from leaching tests undertaken on these products have shown persistent high concentrations of large numbers of unknown organic compounds over the three 72 hour extraction periods of the tests.

The general objective of this project was to analyse samples of water from sites where flexible rising mains had been in use for some time to determine the quantity and nature of any leachates present. Following this initial sampling, the riser was replaced with a new one and the leachates were monitored over a period of weeks. This work was carried out in co-operation with two water undertakers.

1.2 Objectives

- a) To conduct extended leaching tests to determine the die-away rates for the unknown compounds found during the previous laboratory testing, taking into account that both outer and inner surfaces of the rising main will normally be in contact with water intended for human consumption.
- b) To attempt to identify persistent unknown compounds (some of which may be oligomers of the base polymer used).
- c) If compounds reach acceptably low concentrations during extended extraction periods, to consider how this level of leaching could be achieved in practice, through documented commissioning requirements, and whether this could be undertaken by the manufacturer before delivery to the end user.
- d) To determine whether leaching characteristics change with differing water types, e.g. from chalk and sandstone aquifers.
- e) To determine whether subsequent enhancement of leaching of substances from the rising main into the borehole occurs as a result of stagnation of water during shutdown periods and to consider how any such effects could be ameliorated.

2. METHODOLOGY

2.1 Sample locations

Water companies were contacted to identify those that had flexible rising mains installed and that were willing to co-operate in the project. Two suitable sites were identified – these are referred to as sites F (chalk aquifer) and A (greensand aquifer). Each of these sites had existing 152 mm (6 inch) diameter flexible rising mains of the same type and manufacturer (Angus Fire Armour Wellmaster).

It required considerable effort and negotiation with water companies to identify suitable sites and this led to a substantial delay in progressing the project.

In addition, information on leaching from flexible reinforced polyurethane hoses was reviewed. This information was held on DWI's confidential Regulation 31 approvals files and these files were reviewed at DWI's offices. This was done to provide information to assist in the identification of unknown chemicals found by GC-MS analysis.

2.2 Sampling programme

At each of the two identified sampling sites (F and A) the following general experimental protocol was followed.

- With the existing hose in service, a sample was taken under flowing conditions after one hour's flushing (as a 'control') then a further sample was taken following 72 hour's stagnation.
- The borehole was taken off line, i.e. no longer feeding the public water supply. This was carried out by water company staff.
- The flexible riser was replaced with a new section of flexible hose, in accordance with the manufacturer's Instructions for Use document and following the water company's normal commissioning procedure. This was carried out by water company and manufacturer's staff.
- After flushing with water for one hour a control sample was taken. A stagnation period was imposed, after which a sample was taken immediately. The flushing, stagnation and sampling was repeated to give a time-series as below:

Sample No.	1	2	3	4	5	6	7
Stagnation time days	1	2	3	3	5	14	28
Total elapsed time days	1	3	6	9	14	28	56

(Sample numbers 1 to 4 were broadly equivalent, in terms of stagnation time, to the three 72 hour samples from laboratory leaching tests.)

- At site F only, following the above time series, a further 28 day stagnation period was imposed. Flow to waste was then resumed and samples of flowing water were taken immediately and after 30 minutes, 1 hour, 6 hours and 24 hours.
- On completion of testing the original rising main could be reinstated and the borehole returned to service by water company staff.

2.3 Sampling procedure

On each sampling occasion two samples were taken into 1-litre glass bottles with PTFE-lined caps for GC-MS analysis. The bottles were filled to the top leaving no headspace. (Duplicate samples were taken in case of sample bottles being broken or leakage occurring during transport to the laboratory.)

The samples were transported to WRc-NSF's Reading laboratory for analysis for Total Organic Carbon (TOC) and GC-MS General Survey.

2.4 Analysis

GC-MS analysis was conducted according to BS 6920 Part 4, which specifies extraction at pH 2. Samples for GC-MS analysis were solvent extracted within 48 hours of the time of sampling. The samples were acidified to pH 2 with sulphuric acid (10%) and extracted with dichloromethane (DCM), 2×100 ml. The combined DCM extracts were dried (by storing overnight in a freezer and filtering to remove ice crystals) and concentrated in a Kuderna-Danish apparatus at 50° C to approximately 2 ml, and then concentrated further to $500 \, \mu l$ under a stream of nitrogen. The extracts were stored in a freezer for varying lengths of time prior to analysis by GC-MS.

General survey GC-MS analysis was conducted according to BS6920 Part 4 using a Hewlett-Packard 5890 gas chromatograph (GC) directly coupled to a VG 70S mass spectrometer.

Data interpretation was undertaken by inspecting the mass spectra of all the peaks detected on the total ion current (TIC) chromatogram. If mass spectra were not recognised, libraries of mass spectra (either the NIS, NISTREP and Wiley libraries held on the GC-MS data system or a hard copy version of the Eight Peak Index) were utilised in an attempt to identify the compound giving rise to a particular mass spectrum. If this approach was unsuccessful, an attempt was made to interpret the mass spectrum from first principles. Where no identity can be suggested, compounds are listed as unknowns, together with a listing of the four most intense ions in the mass spectrum (in decreasing order of intensity).

Estimates of the concentrations of the compounds identified were made using the responses obtained for deuterated internal standards, which were added to the sample prior to analysis. Quantification was based on a comparison of the TIC chromatogram peak area of a compound of interest with the peak area of an internal standard. The internal standard used was that with the closest retention time to the peak for the compound of interest.

TOC was determined by a UV/persulphate oxidation technique with non-dispersive infra-red detection. The instrument was calibrated with a standard solution (10 mg/l as organic carbon) of potassium hydrogen phthalate (single point calibration). In addition, control standards, a solution of potassium hydrogen phthalate (5 mg/l as organic carbon), and blank water were analysed with the samples.

3. RESULTS

3.1 Site F

3.1.1 Sampling schedule

The sample schedule and associated sample codes are given in Table 3.1.

3.1.2 TOC

The TOC results are tabulated in Table 3.2. The results for TOC during the main phase of sampling are given in Figure 3.1 and Figure 3.2 shows the TOC results from the final flushing experiment.

3.1.3 GC-MS general survey

The results for GC-MS general survey are given in Table 3.3. The detailed results are in Appendix A.

Table 3.1 Sample Schedule - Site F

				Elapsed	1			No.	
			Date	days	Time	S	amples	Samples	Spl Code
Old riser experiment	Flowing sample	Day 1	17/10/2008		10:05	60 minute flu	sh	1	FD1
•	Stagnation sample	Day 4	20/10/2008		10:15	Stagnation		1	F2
New riser experiments	3	Start date	02/12/2008		09:00	60 minute flu	sh	1	F3
	Sample #	Stagn Day	S						
	1	1	03/12/2008	1	08:55	Stagnation	60 minute flush	2	F4/F5
	2	2	05/12/2008	3	09:00	Stagnation	60 minute flush	2	F6/F7
	3	3	08/12/2008	6	08:55	Stagnation	60 minute flush	2	F8/F9
	4	3	11/12/2008	9	08:55	Stagnation	60 minute flush	2	F10/F11
	5	5	16/12/2008	14	08:50	Stagnation	60 minute flush	2	F12/F13
	6	14	30/12/2008	28	09:15	Stagnation	60 minute flush	2	F14/F15
	7	28	27/01/2009	56	09:00	Stagnation		1	F16
	Stagnate	28	24/02/2009	84					
Resume flow and sam	ple after following l	hours	24/02/2009	84	08:55	Stagnation		1	F17
•	0.5		24/02/2009	84	09:25	Flowing		1	F18
	1		24/02/2009	84	09:55	Flowing		1	F19
	6		24/02/2009	84	14:55	Flowing		1	F20
	24		25/02/2009		08:55	Flowing		1	F21

Table 3.2 TOC results - Site F

Sample	TOC mg/l
FD1	0.44
F2	0.50
F3	0.41
F4	1.28
F5	0.83
F6	1.24
F7	0.67
F8	0.50
F9	0.57
F10	0.75
F11	0.47
F12	0.69
F13	0.87
F14	0.46
F15	0.90
F16	0.90
F17	0.72
F18	0.60
F19	0.57
F20	0.50
F21	0.37

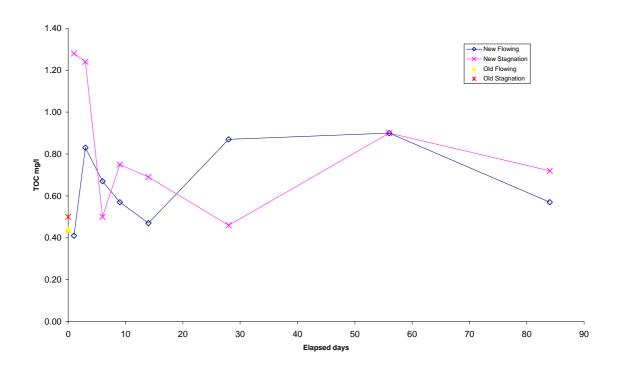


Figure 3.1 TOC data - Site F

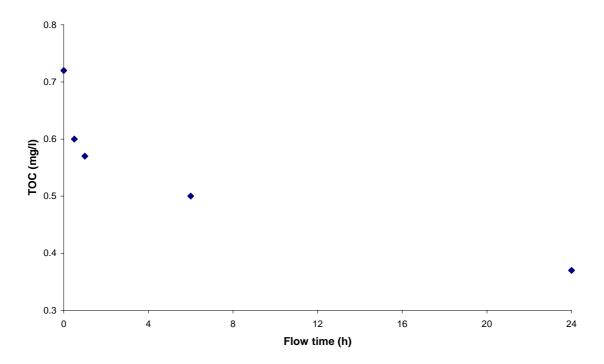


Figure 3.2 TOC results for day 84 flushing experiment - Site F

Table 3.3 GC-MS results (μ g/l) - Site F³

Scan	Compound	FD1 F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19	F20	F21
0004	iso-Butanol			8.4		5.4															
0642	2-Ethylhexanol			0.4							0.1			0.3	0.7						
0891	2-Phenoxyethanol													0.2	0.6						
1013	Unknown m/z 101,42,54,55			0.7		0.7															
1018	Unknown m/z 55,84,112,142													0.2							
1024	Unknown m/z 55,84,112,41															0.2					
1065	Dodecamethylcyclohexasiloxane				0.2																
1081	2,4,4-Trimethylpentane-1,3-diol mono-isobutyrate				0.2																
1095	Unknown m/z 43,58,41,27														2.0						
1192	2,-Di-t-butyl-4-methylene-2,5-cyclohexadien-1-one				0.2							0.1									
1196	2,6-Di-t-butyl-2,5-cyclohexadiene-1-one			0.4		0.3				0.1				0.1							
1241	BHT		0.2	3.4	0.2	4.5	0.2	0.7	0.2	0.9	0.2	0.6	0.2	1.1	0.6	0.8	0.8	0.5	0.5	0.3	0.4
1250	1,6-Dioxacyclododecane-7,12-dione			0.3		0.3								4.1	0.6	7.4	3.2	0.1			
1268	N,N-Diethyl-3-pyridinecarboxamide	0.4																			
1320	Unknown m/z 71,55,41,43 (M+ 216?)			2.6		2.5															

Note: In order to ensure the performance of the GC column used for the GC-MS runs is satisfactory, the retention gap (a section of capillary column fitted between the GC injector and the analytical GC column) is usually changed before a batch of sample extracts is run. Also, when this is done a small length of the analytical GC column is usually removed (as on-column injection is used, any non-volatile material remains on the retention gap, and may also contaminate the front end of the analytical GC column). As a consequence the scan number reported for the same compound in different extracts may be different, depending on whether the extracts were run as one batch (i.e. the retention gap and analytical column length were identical for each extract) in which case the reported scan numbers will be within a 1-3 scan range, or whether the extracts were run in different batches (i.e. the retention gap and analytical column length were slightly different for each batch). In the latter case, if there has been a significant time period between running the extracts from a survey taking several months (as in this present case), the scan numbers reported for the same compound may vary by up to 50 scans.

Table 3.3 continued

Scan	Compound	FD11	F2 F3	F	4 F	5	F6 F	7	F8	F9	F10	F1	1 F12	2 F1:	3 F1	14 F	715	F16	5 F1′	7 F1	8 F19	F20	F21
1409	Unknown m/z 41,55,81,43				0.	.2																	
1441	Unknown m/z 55,42,101,41 (M+ 229)			1.	.1		1.3																
1494	N-Butylbenzenesulphonamide*	1.5	31.6 1.5	5 1.	.8 2	.6	10.4 1	.2	10.1	0.9	5.7	1.0	4.5	0.7	7.	9 1	0.						
1628	Di-n-butyl phthalate															0).9						
1649	2-Phenyltridecane	0.5).4													0	8.0						
1650	Methyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate	;		0.	.3		0.3																
1742	Unknown m/z 71,42,41,55														1.0	0		0.5					
1778	Unknown m/z 71,42,55,43 (M+ 288)			14	4.1		12.9		1.5		2.2												
1779	Unknown m/z 42,71,41,43		0.2	2															0.6				
1779	Unknown m/z 71,42,41,43									0.2		0.2											
1975	Unknown m/z 42,41,71,72			1.	.2		0.9																
2025	Unknown m/z 55,99,173,113 (M+ 344)														2.	2 1	.1						
2065	Unknown m/z 55,173,99,113 (M+ 344)																	2.8					
2068	Unknown m/z 42,41,71,39											1.6											
2086	Unknown m/z 71,42,41,73															1	.4						
2107	Unknown m/z 71,42,43,55 (M+ 360)												5.6		9.	7							
2108	Unknown m/z 42,71,41,72											0.8		1.3									
2123-21	65 Unknown m/z 42,71,41,72									8.7													
2124	Unknown m/z 71,42,41,55 (M+ 360)																	2.8	3.6	;			
2126	Unknown m/z 42,41,71,27		0.6	ó	3:	5.1	6	59.1															
2126	Unknown m/z 42,71,41,43 (M+ 360)			30	6.9		61.1		8.8		9.6												
2180	Unknown m/z 55,173,99,42 (M+ 372)														16	5.6							
2180	Unknown m/z 55,173,99,53 (M+ 372)															1	.5						

Table 3.3 continued

Scan	Compound	F1	F2 F	3 F4	F5	F6	F7	F8 F	9 F10 I	F11 F12	2 F13 F	14 F15	5 F16 F17 F18 F19 F20 F2
2217	Unknown m/z 55,91,173,41 (M ⁺ 372)												10.0
2304	Unknown m/z 42,41,71,39			4.8	}	4.9							
2351	Unknown m/z 55,42,41,54 (M+ 400)										6.	5	4.0
2437	Unknown m/z 42,71,41,55											1.0	
2479	Unknown m/z 42,41,71,27				0.6		1.0						
2480	Unknown m/z 42,41,71,39		1	.1									
2480	Unknown m/z 42,41,71,43							1	.9 2	2.0			
2482	Unknown m/z 42,71,41,72 (M+ 432)			60.	.7	96.0		14.9	16.1	8.2	9.	6	3.8 4.7
2504	Unknown m/z 221,250,180,132 (M+ 340)			1.1		1.4							
2775	Unknown m/z 57,45,101,155									2.5			
2782	Unknown m/z 42,41,71,39			2.3	;	3.0							
2816	Unknown m/z 57,45,101,41					3.9		9.1	6.0				
3049	Unknown m/z 42,71,41,39 (M+ 504)								11.7	5.9	4.	8	1.9
3080	Unknown m/z 42,41,71,27		0	.8									
3080	Unknown m/z 42,41,71,39				0.8			1	.6				
3085	Unknown m/z 42,41,71,27 (M+ 504)			61.	.1	92.0		12.4					
3297	Unknown m/z 57,45,41,101 (M+ 504?)							1.2					
3311	Unknown m/z 57,45,41,29					1.0							

^{*} N-Butylbenzenesulphonamide was detected in most samples from Site F but this may have been an artefact that leached from the nylon sampling hose that was installed to enable samples to be taken. This compound has been detected previously in groundwater samples taken using this type of tubing but not detected when this tubing was not used. This chemical was not detected in samples taken from site A.

3.2 Site A

3.2.1 Sampling schedule

The sample schedule and associated sample codes are given in Table 3.4.

3.2.2 TOC

The TOC results are given in Table 3.5 and are plotted in Figure 3.3.

3.2.3 GC-MS general survey

The results are tabulated in Table 3.6 and given in detail in Appendix A. The duplicate sample for A14 (labelled as A14D) was also analysed and the results are included in the table. No compounds attributable to the flexible riser were found in samples A9 and A11 (flowing samples).

Table 3.4 Sample Schedule - Site A⁴

				Elapse	d			No.	
			Date	days	Time	S	amples	Samples	Spl Code
Old riser experiment	Flowing sample	Day 1	03/03/2009)	11:20	60 minute flu	sh	1	A1
-	Stagnation sample	e Day 4	06/03/2009)	09:20	Stagnation		1	A2
New riser experiment	s	Start date	10/03/2009)		60 minute flu	sh	1	A3
	Sample #	Stagn Day	'S						
	1	1	11/03/2009	1	09:10	Stagnation	60 minute flush	n 2	A4/A5
	2	2	13/03/2009	3	08:55	Stagnation	60 minute flush	n 2	A6/A7
	3	3	16/03/2009	6	09:50	Stagnation	60 minute flush	n 2	A8/A9
	4	3	19/03/2009	9	08:50	Stagnation	60 minute flush	n 2	A10/A11
	5	5	24/03/2009	14	08:50	Stagnation	60 minute flush	n 2	A12/A13
	6	14	07/04/2009	28	08:50	Stagnation	60 minute flush	n 2	A14/A15
	7	28	05/05/2009	56	08:50	Stagnation		1	A16

⁴ It was planned to include an extended flushing experiment on day 84, as for site F. However, when the sampler arrived on site on day 84 it was discovered that the water company had removed the sampling standpipe without notice.

Table 3.5 TOC results - Site A

Sample	TOC mg/l
A1	0.61
A2	0.71
A3	0.74
A4	0.95
A5	0.61
A6	1.03
A7	0.52
A8	0.65
A9	0.53
A10	1.44
A11	0.65
A12	1.49
A13	0.46
A14	2.51
A15	0.66
A16	0.83

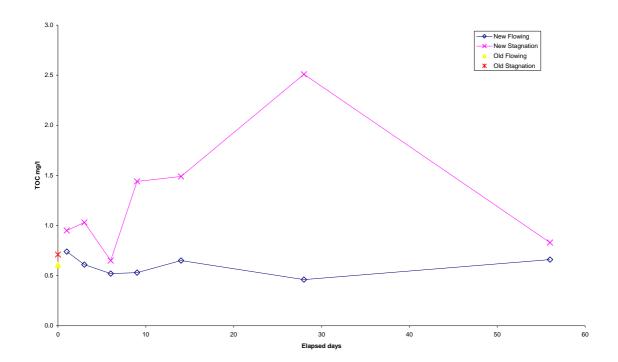


Figure 3.3 TOC data - Site A

Table 3.6 GC-MS results (μ g/l) - Site A⁵

Scan Compound	A1	A2	A3	A4	A5	A6	A7	A8	A10	A12	A13	A14	A14D A15	A16
0004 TL + 1 1 C												<i>c</i> 1		
0004 Tetrahydrofuran												6.1		
0004 iso-Butanol												7.8		
0298 Ethyl-2-hydroxypropanoate												0.7		
0298 Ethyl lactate + butyl acetate (contaminant)													1.2	
0405 Xylene isomer												0.3		
0642 2-Ethylhexanol												0.4		
0743 2-Butoxyethylacetate												0.2		
0817 4-Butoxybutanol												0.5		
1013 Unknown m/z 101,42,54,55										1.3		4.2		0.3
1021 Unknown m/z 101,42,54,27						3.3								
1023 Unknown m/z 101,42,54,55									2.2				9.0	
1095 Unknown m/z 43,58,41,27		1.3												
1204 Unknown m/z 42,41,55,71												0.2		
1206 4-Methylene-2,6-di-t-butyl-2,5-cyclohexadien-1-one						0.2								
1226 Unknown m/z 45,58,115,55						0.2								

Note: In order to ensure the performance of the GC column used for the GC-MS runs is satisfactory, the retention gap (a section of capillary column fitted between the GC injector and the analytical GC column) is usually changed before a batch of sample extracts is run. Also, when this is done a small length of the analytical GC column is usually removed (as on-column injection is used, any non-volatile material remains on the retention gap, and may also contaminate the front end of the analytical GC column). As a consequence the scan number reported for the same compound in different extracts may be different, depending on whether the extracts were run as one batch (i.e. the retention gap and analytical column length were identical for each extract) in which case the reported scan numbers will be within a 1-3 scan range, or whether the extracts were run in different batches (i.e. the retention gap and analytical column length were slightly different for each batch). In the latter case, if there has been a significant time period between running the extracts from a survey taking several months (as in this present case), the scan numbers reported for the same compound may vary by up to 50 scans.

Table 3.6 continued

Scan Compound	A1	A2	A3	A4	A5	A6	A7	A8	A10	A12	A13	A14	A14 D A15	A16
1240 2,6-Di-t-butyl-4-hydroxy-4-methyl-2,5-cyclohexadien-1-o	ne											0.3		
1241 BHT			0.3	0.3	0.2	2.6	0.2	0.2	2.0	6.3	0.2	6.4	6.8	0.7
1250 1,6-Dioxacyclododecane-7,12-dione				0.6		2.0			1.8	1.9		4.3	6.8	0.2
1257 Unknown m/z 45,58,54,55													0.7	
1257 Unknown m/z 45,115,58,55												0.3		
1308 Diethyl phthalate	0.2	0.2												0.1
1327 Unknown m/z 71,55,41,43 + d_{34} -Hexadexane (internal star	ndard)									3.4		4.2	4.2	
1375 Unknown m/z 71,43,41,57												0.3		0.1
1440 Unknown m/z 55,101,42,41									0.3	1.0		1.1	1.1	
1628 Di-n-butyl phthalate													0.2	
1650 Methyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate										0.3			0.4	
1710 Sulphur (S ₈)								0.3						
1742 Unknown m/z 71,42,41,55								1.5						
1752 Unknown m/z 71,42,55,41 (M+288)										88.7		70.1		8.0
1754 Unknown m/z 71,42,41,55 (M+288)									122.4	ļ				
1754 Unknown m/z 42,71,41,43 (M ⁺ 288)						11.6								
1755 Unknown m/z 42,71,41,43				3.2										
1810 Unknown m/z 71,73,55,42 (M ⁺ 288)													58.7	
1945 Unknown m/z 42,41,71,43										5.8		4.1		
1975 Unknown m/z 42,41,71,72				33.2	22.0	*					92.9*	:		
1993 Unknown m/z 42,41,71,72 (M ⁺ 576)							68.8	*						
2001 Unknown m/z 42,71,73,41													3.2	
2065 Unknown m/z 55,173,99,113 (M ⁺ 344)													1.4	

Table 3.6 continued

Scan Compound	A1	A2	A3	A4	A5	A6	A7	A8	A10	A12	A13	A14	A14 D A1	5 A16
2094 Unknown m/z 42,71,41,55 (M ⁺ 360)									236.2	,				
2094 Unknown m/z 71,42,41,55 (M+ 360)										175.8	}			
2094 Unknown m/z 42,41,71,39 (M+ 360)						153.9	9							
2095 Unknown m/z 42,41,71,39								3.3						
2135 Di-(2-ethylhexyl) phthalate														2.9
2151 Unknown m/z 71,42,73,55 (M+ 360)														14.7
2153 Unknown m/z 71,55,73,42 (M ⁺ 360)												127.9	9 113.6	
2250 Unknown m/z 55,41,42,173 (M ⁺ 372)													1.7	
2272 Unknown m/z 42,41,71,72						10.1								
2273 Unknown m/z 42,41,71,73										12.9				
2339 Unknown m/z 42,73,71,55													8.4	
2340 Unknown m/z 42,73,71,41												6.2		
2433 Unknown m/z 55,42,41,71 (M+ 400)													1.4	
													122	2.8
2436 Unknown m/z 42,71,41,72 (M ⁺ 576)													*	
2443 Unknown m/z 42,41,71,72				67.8		278.	1	4.7						
2445 Unknown m/z 42,41,71,72 (M ⁺ 432)									345.6	294.2	2			
2528 Unknown m/z 71,42,41,55 (M+ 432)														21.1
2534 Unknown m/z 42,71,41,55 (M ⁺ 432)													218.5	
2535 Unknown m/z 71,42,55,73 (M ⁺ 432)												227.9		
2560 Unknown m/z 250,221,180,132													1.3	
2736 Unknown m/z 42,41,71,72						7.7								
2774 Unknown m/z 113,69,41,39				2.4										
2866 Unknown m/z 42,73,71,41													4.1	

Table 3.6 continued

Scan Compound	A1	A2	A3	A4	A5	A6	A7	A8	A10	A12	A13	A14	A14 D A15	A16
3022 Unknown m/z 42,41,71,72 3026 Unknown m/z 42,71,41,72 (M ⁺ 504) 3031 Unknown m/z 42,41,71,39 (M ⁺ 504) 3208 Unknown m/z 71,42,55,73 (M ⁺ 504) 3208 Unknown m/z 42,41,71,72 (M ⁺ 504)				56.7		240.	9		237.4	1 215.0	5	193.3	3 203.9	14.5

^{*} Probably carry-over from the previous sample. Normally oligomers elute on GC-MS in order of increasing molecular weight, so when an oligomer with the highest molecular weight elutes before one of lower molecular weight it is highly likely that this is due to carry-over.

3.3 Identification of unknowns

A series of unknowns with molecular weights in multiples of 72 (i.e. m/z 288, 360, 432 and 504) was found in many of the stagnation samples. An example chromatogram is given in Figure 3.4 and representative mass spectra are given in Figure 3.5 to Figure 3.8. Plots of the concentrations of these compounds are shown in Figure 3.9 and Figure 3.10.

Prior to carrying out the GC-MS analysis of extracts from the water samples taken at the selected sampling sites, previous analytical results obtained by two other Regulation 31 designated test laboratories when flexible rising mains were considered for approval, were inspected.

Two reports by laboratory M provide analytical results relating to two different test samples. The first relates to a hose, diameter 51 mm, whereas the second relates to a riser with a diameter of 152 mm. Both samples were submitted for approval by the same manufacturer and both products are described as the same trade name. However, from an examination of the GC-MS data contained in the two reports it appears that the two reports relate to different materials – the migration waters from the 51 mm diameter hose contain many significant unidentified compounds that have mass spectra in which the base peak is at m/z 59, while the migration waters from the 152 mm diameter riser contain significant compounds (again unidentified) whose mass spectra have a base peak at m/z 71. The total ion current (TIC) chromatograms also differ significantly.

Four reports from laboratory L relate to a flexible rising main from a different manufacturer, nominal internal diameter 38 mm. The compounds present at the highest concentrations in the migration waters were not identified in the initial report but the base peaks in their mass spectra were at m/z 71, and from the mass spectra provided in the appendix to this report it appears that these compounds were the same as those detected by laboratory M in the 152 mm diameter riser. One of the later reports from laboratory L suggests that the unknown compounds detected at the highest concentrations in the migration waters could be a series of oligomers of poly(tetrahydrofuran) (polyTHF), also referred to as poly(tetramethyleneglycol) (PTMEG). Butane-1,4-diol and PTMEG may be used in the production of polyurethanes.

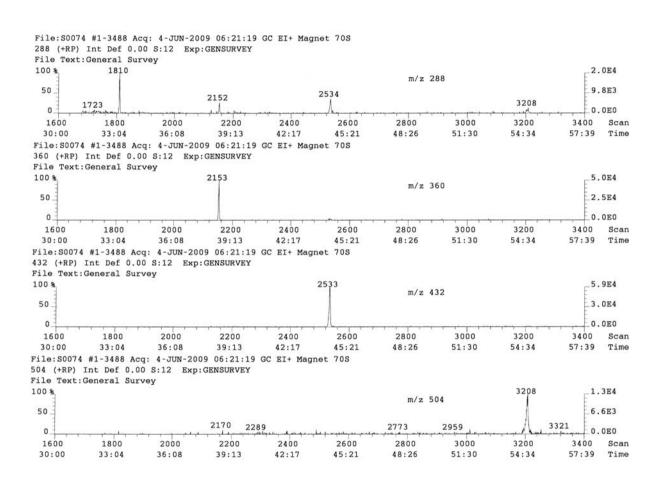


Figure 3.4 Mass chromatograms of unknowns

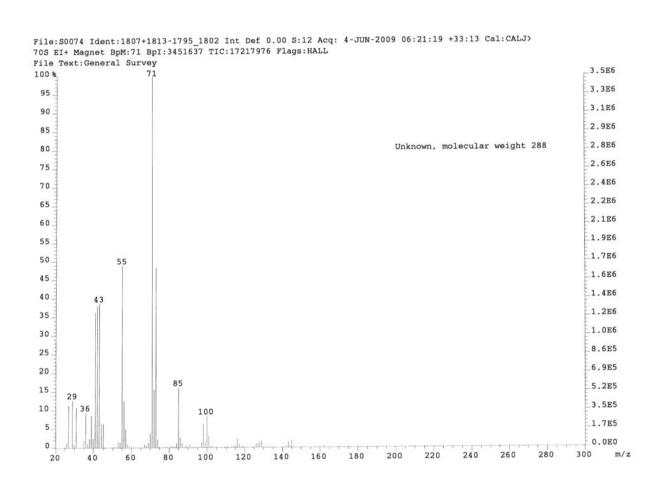


Figure 3.5 Mass spectrum of unknown m/z 288

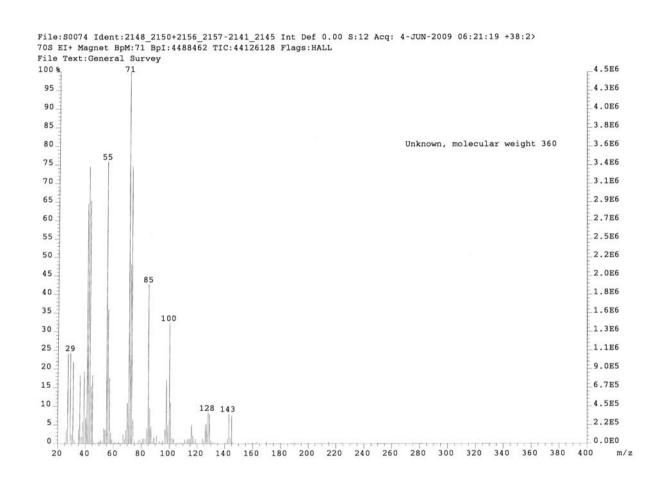


Figure 3.6 Mass spectrum of unknown m/z 360

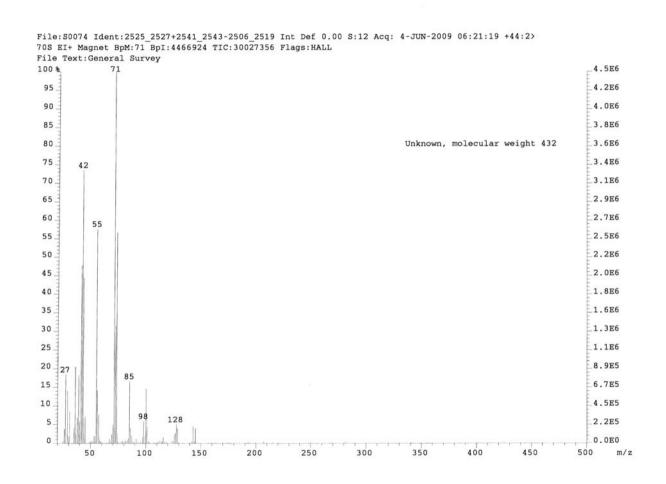


Figure 3.7 Mass spectrum of unknown m/z 432

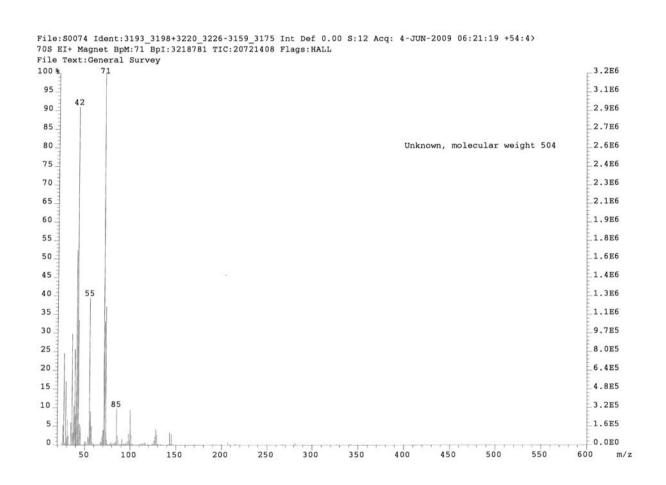


Figure 3.8 Mass spectrum of unknown m/z 504

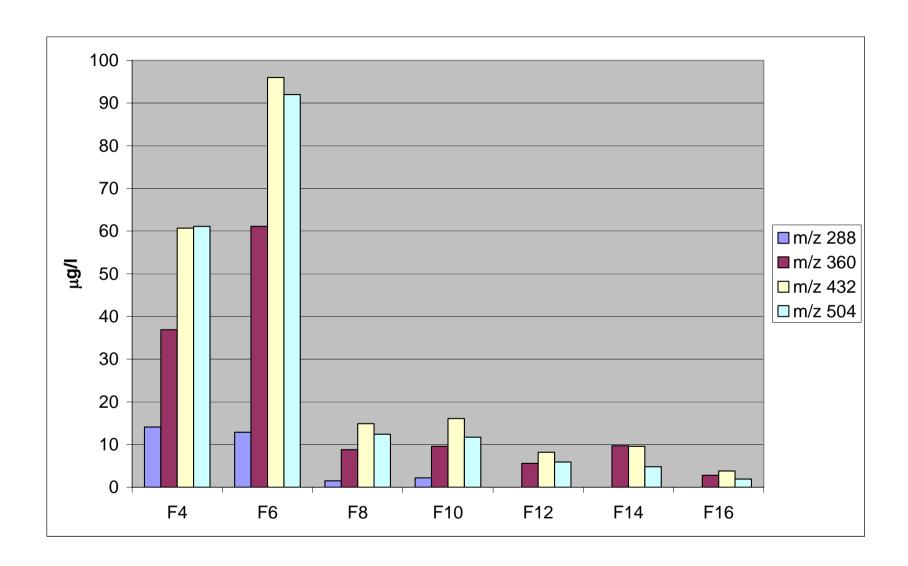


Figure 3.9 Unknowns in samples from Site F

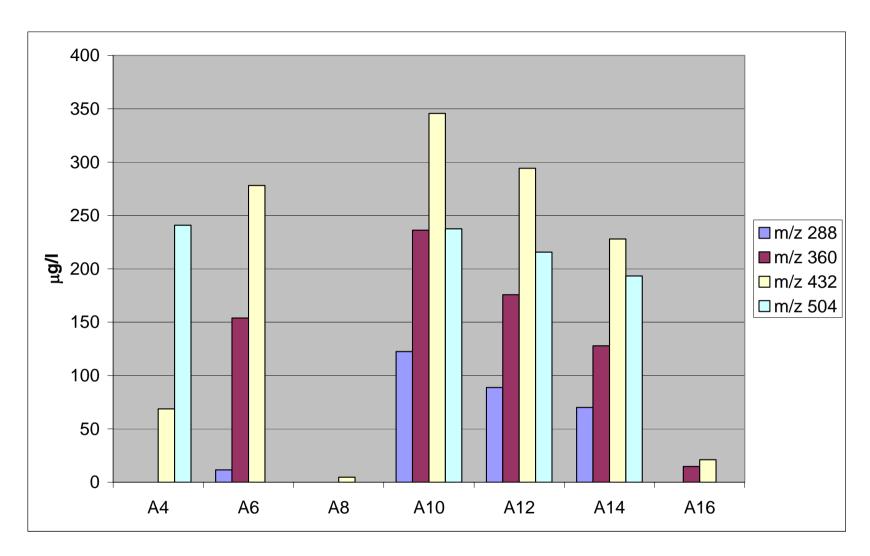


Figure 3.10 Unknowns in samples from Site A

As noted above, the major peaks detected in the migration waters during the course of this present work appear to be the same as those previously reported by Laboratory M (from the 152 mm diameter riser) and by laboratory L (from the 38 mm flexible rising main), as their mass spectra, while not identical, are very similar and the relative retention times of the major compounds detected in the TIC traces reported by laboratories M and L and in this current work are obviously similar. This conclusion is also supported by the fact that the mass spectral peaks identified in this present study as being the molecular ions for a series of oligomers differing in molecular weights by 72 mass units (the main compounds having molecular weights of 288, 360, 432, 504 and 576) can also be seen in the mass spectra provided by laboratories M and L (although they were not recognised as being the relevant molecular ions at the time). For example, the laboratory M report shows a mass spectrum where the highest observed mass is at m/z 360, and another in which the highest observed mass was at m/z 432. An Appendix to one of the laboratory L reports shows similar mass spectra in which the highest observed masses are at m/z 360 and 432 respectively. In this present report the comparable spectra are shown in Figure 3.6 and Figure 3.7. During the course of this present work, one extract (F14) was re-run on GC-MS at a reduced electron ionisation voltage (30 eV, rather than the usual 70 eV), which produces less energetic ions and consequently tends to increase the relative intensities of molecular ions (as they are less energetic (i.e. more stable) this tends to reduce fragmentation). This approach confirmed that the molecular weights were as suggested, i.e. at m/z 288, 360, 432, 504 and 576. These correspond to the cyclic oligomers of PTMEG – -(-CH₂.CH₂.CH₂.CH₂.O-)_n, where n = 4 to 8. Such cyclic oligomers have previously been recognised as constituents of thermoplastic polyurethanes and the lower molecular weight oligomers are water soluble.

Given all of the above evidence, the identities of the unknowns detected by laboratories M and L and WRc-NSF in the highest concentrations in migration waters from materials used as rising mains are considered to be as follows:

1,6,11,16-Tetraoxacycloeicosane	$C_{16}H_{32}O_4$	M.Wt. 288
1,6,11,16,21- Pentaoxacyclopentacosane	$C_{20}H_{40}O_5$	M.Wt. 360
1,6,11,16,21,26-Hexaoxacyclotriacontane	$C_{24}H_{48}O_6$	M.Wt. 432
1,6,11,16,21,26,31-Heptaoxacyclopentatriacontane	$C_{28}H_{56}O_{7}$	M.Wt. 504
1,6,11,16,21,26,31,36-Octaoxacyclotetracontane	$C_{32}H_{64}O_{8}$	M.Wt. 576

Final proof of these proposed identities could be obtained by running pure standards on GC-MS and confirming that their GC retention times and mass spectra were identical to the compounds detected in the various migration waters. However no commercial source of pure standards has been found.

4. **DISCUSSION**

At both sites, only low levels of leaching were observed from the original liners that had been in use for many years. After the introduction of new liners, large numbers of unknowns were detected in the stagnation samples. These compounds tended to be present at lower concentrations or were undetectable in samples taken after flushing for 60 minutes.

The major unknowns were identified as a series of oligomers differing in molecular weight by 72 mass units, the main compounds having molecular weights of 288, 360, 432, 504 and 576. Examination of mass spectra provided in earlier test reports on leaching from similar materials from laboratories L and M showed that these same compounds were present. These compounds are likely to be oligomeric cyclic ethers although their identities cannot be confirmed conclusively due to a lack of pure standards. However, a reasonably high degree of confidence can be attached to this identification since the same series of cyclic ethers (although wrongly named after the first one) are included in NSF Standard 61 (NSF 2007, NSF 2007a). The presence of oligomeric cyclic ethers in polyurethanes has been reported (e.g. US Patent 4638097).

Based upon the TOC results there did not appear to be a difference in leaching characteristics between chalk- and greensand-derived waters. There were differences in the concentrations of chemicals detected by GC-MS but it is not known whether these differences were attributable to differences in water quality or to differences between batches of flexible hose.

Chemicals were still detected in stagnation samples several weeks after the new liners were installed. This suggests that it would not be practical or effective for the manufacturer to rinse the risers as part of the manufacturing process.

Concentrations of leached chemicals in samples taken after flushing tended to be low. At site F when samples were taken after flushing for up to 24 hours, practically no leaching was observed after 24 hours flushing. This suggests that a suitable control method would be to flush newly installed risers, with the output going to waste, for 24 hours prior to reconnection to the public water supply.

5. CONCLUSIONS

- 1. Negligible leaching of chemicals occurred from old risers that had been in use for five years or longer.
- 2. GC-MS analysis of stagnation samples from new flexible risers installed at both sites showed the presence of a number of unknowns (that were subsequently tentatively identified) at relatively high concentrations.
- 3. These chemicals were absent or present at lower concentrations in flushed samples.
- 4. The chemicals were still detected in stagnation samples several weeks after the liners were installed.
- 5. The major unknowns were identified as a series of oligomers differing in molecular weight by 72 mass units, the main compounds having molecular weights of 288, 360, 432, 504 and 576.
- 6. These compounds are likely to be oligomeric cyclic ethers although their identities cannot be conclusively confirmed due to a lack of pure standards.
- 7. Conclusions 4 and 5 are supported by examination of earlier test reports from two other test laboratories.
- 8. There did not appear to be an overall difference in the leaching characteristics at the two sites.
- 9. It would not be practical or effective for the manufacturer to rinse the risers as part of the manufacturing process.
- 10. Flushing to waste before reconnection to a public water supply could be a suitable means for water undertakers to ensure low concentrations of leached chemicals entering supply.

REFERENCES

NSF International (2007) NSF/ANSI Standard 61. Revisions to Standard 61 Section 3. http://standards.nsf.org/apps/group-public/download.php/220/Table%203.1%20Revision-s.pdf

NSF (2007a) NSF/ANSI 61-2007a. Drinking water system components. Health effects. Table D2.

US Patent 4638097 Reducing the content of cyclic oligomeric ethers in polytetramethylene ether glycols or polyoxybutylene polyoxyalkylene glycols.

APPENDIX A DETAILED GC-MS RESULTS

Scan Time -3.4E6 E 0.0E0 6.9E7 6.5E7 6.2E7 5.8E7 5.5E7 5.1E7 4.8E7 4.5E7 4.1E7 3.4E7 3.1E7 2.4E7 -6.9E6 _1.7E7 1.0E7 3.8E7 2.7E7 2.1E7 1.4E7 3500 58:54 3080 3275 Laboratory blank (for FD1) 3000 51:12 2868 2618 2500 43:30 2109 Appendix A Page 2 35:48 2000 File:S0060 #1-3506 Acq:23-OCT-2008 12:39:27 GC EI+ Magnet 70S 1520 28:06 1500 1246 1039 1000 20:24 862 TIC (+RP) S:2 Exp:GENSURVEY File Text:General survey 567 500 12:42 337 53 100% 85_ 30 25 95 90 80 2 0 75 70 45 40 65 09 55 50 35 15 10

General Survey GCMS Analysis

Samples Received 17/10/08 P Jackson WRc-NSF N22648 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

Laboratory blank 1 Bottled water Sample Code:

S0060.2 n/a Sample Type: Data System Code: Associated Blank: Sample Volume:

1 Litre

17-0ct-08 23-0ct-08 1 of 1 **ORG042** Date Received Date Analysed: Method Ref: Page:

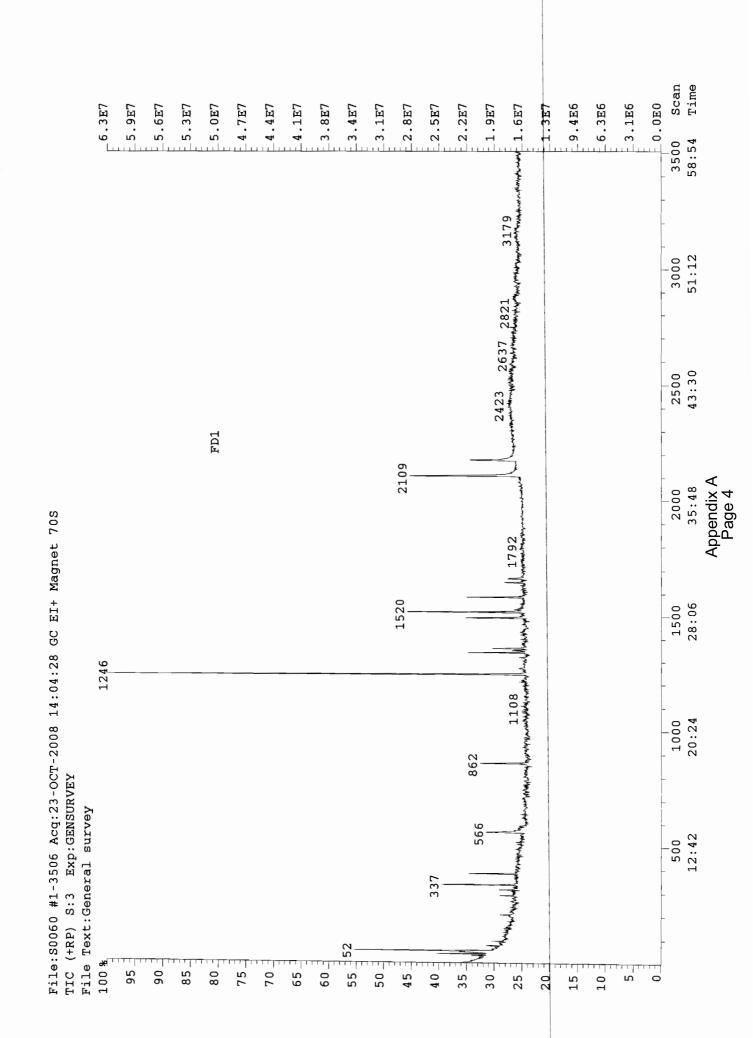
0022 0032 0039 0048 0053				(ug/l)	Standard	Peak
	2-Methyl-1,3-dioxolane	1	1.05	2.0	Bz	Contaminant
	Methyl isopropyl ketone	L	0.53	1.0	Bz	Contaminant
	d ₆ -Benzene	ď	1.04	2.0	I.S.	Internal Standard
	Carbon tetrachloride	d	0.17	0.3	Bz	Contaminant
	Cyclohexane	d	80.9	11.7	Bz	Contaminant
0075	3-Penten-2-ol	1	990	1.2	Bz	Contaminant
	1,4-Dioxane	_ 1	0.27	0.5	Bz	Contaminant
	Toluene	d	0.43	9.4	ı	Contaminant
	Butyl acetate	d	0.50	0.5	ı	Contaminant
	Diacetone alcohol	d	0.37	0.4	IJ	Contaminant
0337	d ₅ -Chlorobenzene	d	2.07	2.0	.S.I	Internal Standard
	d ₁₀₋ p-Xylene	Ь	1.25	1.0	I.S.	Internal Standard
	d ₅ -Phenol	Ь	2.12	8.0	.S.I	Internal Standard
0862	d ₈ -Naphthalene	Ь	1.45	1.0	I.S.	Internal Standard
	d ₂₀ -BHT	_ d	12.59	8.0	I.S.	Internal Standard
1321	Diethyl phthalate	ď	0.36	0.2	THB	Contaminant
1342	d ₃₄ -Hexadecane	Ь	1.49	1.0	I.S.	Internal Standard
	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate		0.49	0.3	THB	Contaminant
1362	Unknown 173, 55, 99, 84	n	0.76	0.5	BHT	Contaminant
	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	4.83	2.0	I.S.	Int. Std. + Contaminan
	Tris-(chloropropyl)phosphate isomer	_	0.22	0.1	BHT	Contaminant
	Di-isobutyl phthalate	Ъ	2.48	1.6	BHT	Contaminant
1666	Di-n-butyl phthalate	Ъ	0.77	0.5	BHT	Contaminant
2109	Di-(2-ethylhexyl) phthalate	Ь	6.95	14.0	Sq	Contaminant
2178	₆₂ -Squalane	Ь	3.97	8.0	I.S.	Internal Standard

Internal standards used. BE-d6-Berzene, Cl-d5-Chiorobenzene, Xy-ro10-p-Xylene, Po-d5-Phenol, Na-d8-Haphthalene, BHT = d20-2,6-d8-busyl-4-metrylphenol, Ha-d34-Heusdycane, Ph-d10-Phenanthene and Sq-d62-Squalane **Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. A. James


Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked ⁺: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test J. Dunning

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 6/11/05

Laboratory Manager Appendix A Page 3

Authorised By:

General Survey GCMS Analysis

Groundwater S0060.3 S0060.2 FD1(B) 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 17/10/08 P Jackson WRc-NSF N22648 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

14907-0

ORG042 17-Oct-08 23-Oct-08 1 of 1 Date Received Date Analysed: Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ug/l)	Standard	Peak
0031	Methyl isopropyl ketone	T	0.24	0.5	Bz	Contaminant
0038	de-Benzene	Ь	0.93	2.0	I.S.	Internal Standard
0047	Carbon tetrachloride	Ь	0.22	0.5	Bz	Contaminant
0052	Cyclohexane	Ь	5.03	10.8	Bz	Contaminant
0074	3-Penten-2-ol	Ţ	0.49	1.1	Bz	Contaminant
0207	Toluene	ط	0.50	0.5	IJ	Contaminant
0590	Butyl acetate	d	0.29	0.3	IJ	Contaminant
0314	Diacetone alcohol	d	0.75	0.8	ប	Contaminant
0337	d ₅ -Chlorobenzene	Ь	1.92	2.0	l.S.	Internal Standard
0384	d ₁₀₋ p-Xylene	Ь	1.04	1.0	l.S.	Internal Standard
0566	d _s -Phenol	Ь	2.74	8.0	I.S.	Internal Standard
0862	lds-Naphthalene	Ь	1.54	1.0	l.S.	Internal Standard
1246	d ₂₀ -BHT	Ь	11.63	8.0	l.S.	Internal Standard
1321	Diethyl phthalate	Ь	0.20	0.1	BHT	Contaminant
1342	d ₃₄ -Hexadecane	Ь	1.43	1.0	l.S.	Internal Standard
1351	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	⊢	0.50	0.3	BHT	Contaminant
1360	Unknown 173, 55, 99, 84	n	1.14	0.8	BHT	Contaminant
1494	N-Butylbenzenesulphonamide	Ь	2.16	1.5	BHT	Sample
1520	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	4.92	2.0	I.S.	Int. Std. + Contaminant
1530	Tris-(chloropropyl)phosphate isomer	T	0.53	0.4	BHT	Contaminant
1585	Di-isobutyl phthalate	Ь	2.11	1.5	BHT	Contaminant
1649	2-Phenyltridecane	T	0.68	0.5	BHT	Sample
1665	Di-n-butyl phthalate	Ь	0.67	0.5	BHT	Contaminant
2109	Di-(2-ethylhexyl) phthalate	Ь	6.57	17.5	Sq	Contaminant
2178	d ₆₂ -Squalane	a.	3.01	8.0	I.S.	Internal Standard

Internal standards used. B=d5-Bertzene, C|=d5-Chlorobertzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d8-dapthalene, BHT = d20-2,6-dt-buty4-4methyphenol, Hx=d34-Hexadecane Ph=d10-Phenanthene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: H. R. James

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule,

John Dung-J. Dunning Laboratory Manager

Authorised By:

Date: 6/11/08

Scan Time 0.0E0 9.6E6 6.4E6 1.9E7 6.4E7 4.5E7 4.2E7 3.5E7 3.2E7 2.9E7 2.2E7 1.6E7 3.2E6 6.1E7 5.8E7 5.4E7 5.1E7 4.8E7 3.8E7 2.6E7 3E7 58:54 3500 3340 3046 3000 51:12 Laboratory blank (for F2) 2648 2819 2500 43:30 2108 Appendix A Page 6 35:49 2000 File:S0060 #1-3506 Acq:23-OCT-2008 15:29:20 GC EI+ Magnet 70S 1519 28:07 1500 1246 1106 1000 861 TIC (+RP) S:4 Exp:GENSURVEY 749 File Text:General survey 565 12:43 500 336 52 100% 85 95 90 80 75 70 65 30 0 09 50 45 40 35 25 വ 20 15 10

General Survey GCMS Analysis

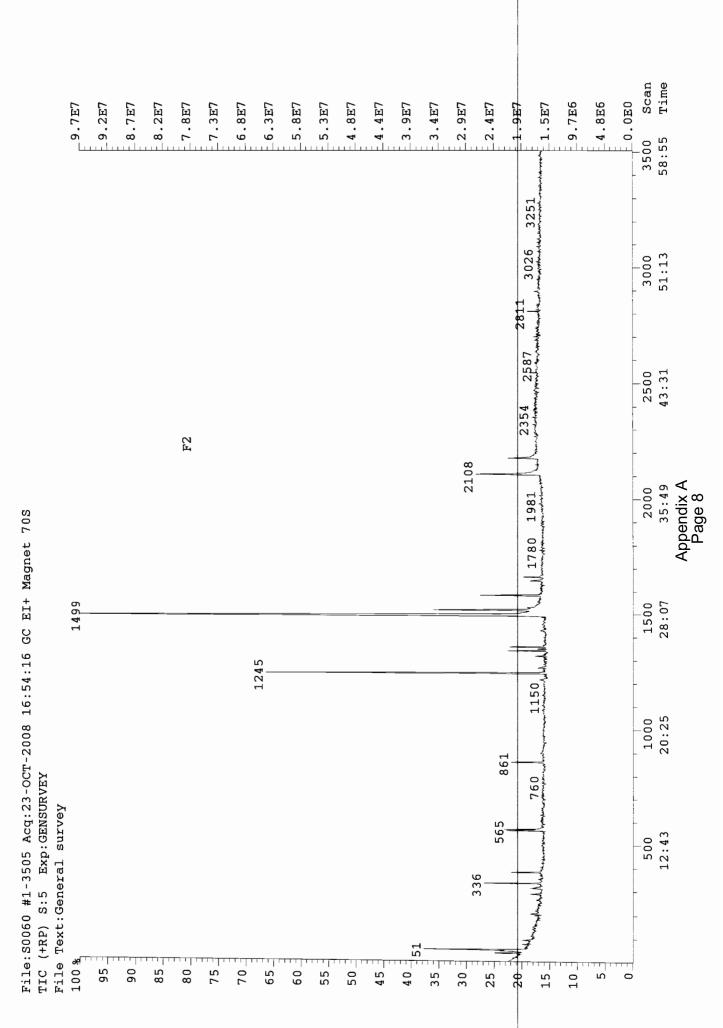
Contact Name: Client: Client Reference: WRC-NSF Reference: WRC-NSF Contract No:	P Jackson WRc-NSF Samples Received 17/10/08 N22649 14907-0	Sample Code: Sample Type: Data System Code: Associated Blank: Sample Volume:	Laboratory blank 2 Bottled water S0060.4 n/a 1 Litre	blank 2 er		Method Ref: Date Received Date Analysed: Page:	ORG042 17-Oct-08 : 23-Oct-08 1 of 1
Scan	Compound	pu	Con.L**	Con.L** Peak Area	Conc. (ug/l)	Internal Standard	Origin of Peak
0021	2-Methyl-1,3-dioxolane		⊢	1.21	2.4	Ť	Contaminant
0038			Ь	1.01	2.0	I.S.	Internal Standard
0047	Carbon tetrachloride		Ь	0.22	4.0		Contaminant
0052	Cyclohexane		Ь	5.53	11.0	Bz	Contaminant
0207	Toluene		Ь	0.54	0.5) I)	Contaminant
0290	Butyl acetate		Ь	0.44	0.4) I	Contaminant
0314	Diacetone alcohol		Ь	06:0	8.0		Contaminant
0336	d ₅ -Chlorobenzene		Ь	2.29	2.0	I.S.	Internal Standard
0384	d ₁₀₋ p-Xylene		Ь	1.20	1.0	Ī	Internal Standard
0565	d _s -Phenol		Ь	2.54	8.0	I.S.	Internal Standard
0861	d ₈ -Naphthalene		Ь	1.52	1.0		Internal Standard
1246	d ₂₀ -BHT		Ь	13.28	8.0		Internal Standard
1319	Diethyl phthalate		Ь	0.46	0.3	BHT C	Contaminant
1342	d ₃₄ -Hexadecane		Ь	1.86	1.0	I.S.	Internal Standard
1351	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	-isobutyrate	_	0.54	0.3	BHT	Contaminant
1360	Unknown 173, 55, 99, 84		N	0.89	0.5	BHT	Contaminant
1430	Unknown 41, 55, 81, 96		n	0.39	0.2	DHT C	Contaminant
1519	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	opyl)phosphate isomer	P/T	2.67	2.0	I.S.	Int. Std. + Contaminant
1529	Tris-(chloropropyl)phosphate isomer	ıer	T	0.24	0.1	D TH8	Contaminant
1585	Di-isobutyl phthalate		Ь	3.05	1.8	BHT	Contaminant
1665	Di-n-butyl phthalate		Ь	1.59	1.0	D TH8	Contaminant
2108	Di-(2-ethylhexyl) phthalate		Ь	8.64	14.0	o bs	Contaminant
2178	de2-Squalane		ď	4.93	8.0		Internal Standard

internal standards used; Bz=66-Benzene, Cl=65-Chlorobenzene, Xy=d10-p-Xytene, Po=65-Phenol, Na=d8-Naphthalene, BHT = d20-28-di-buyk-4-methyphenol, Hv=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d82-Squakane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: H. A. Faun


Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

J. Dunning Laboratory Manager

Date: 13/11/08

General Survey GCMS Analysis

Associated Blank: Sample Volume: Sample Code: Samples Received 17/10/08 P Jackson WRc-NSF N22649 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

F2 DUP Groundwater S0060.5 S0060.4 1 Litre Sample Type: Data System Code:

17-Oct-08 23-Oct-08 **ORG042** 1 of 1 Date Received Date Analysed: Method Ref: Page:

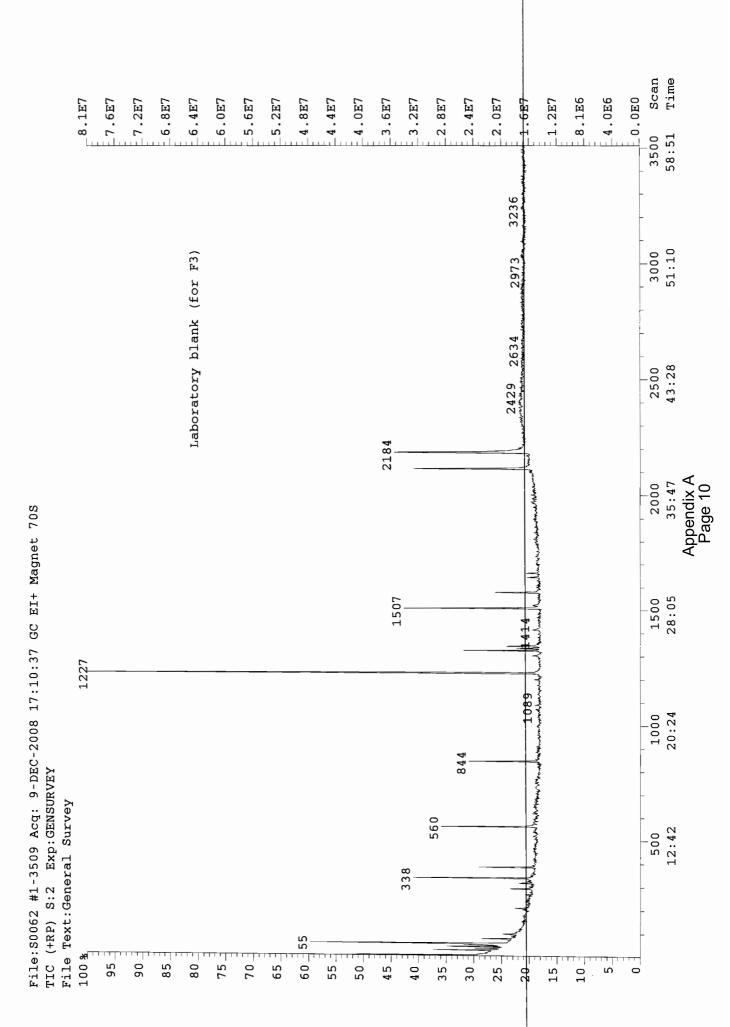
Scan	Compound	Con L**	Con L** Peak Area	Conc	Internal	Origin of
				(l/gn)	Standard	Peak
0036	d ₆ -Benzene	Ь	68'0	2.0	I.S.	Internal Standard
0046	Carbon tetrachloride	d	0.33	0.7	Bz	Contaminant
0051	Cyclohexane	۵	5.71	12.8	Bz	Contaminant
0003	1,4-Dioxane	⊢	0.40	6.0	Bz	Contaminant
0205	Toluene	Д.	0.35	0.3	IJ	Contaminant
0289	Butyl acetate	۵	0.53	0.5	Ö	Contaminant
0313	Diacetone alcohol	d	1.04	6.0	IJ	Contaminant
0336	d _s -Chlorobenzene	d	2.34	2.0	1.S.	Internal Standard
0383	d ₁₀₋ p-Xylene	d	1.23	1.0	I.S.	Internal Standard
0565	d ₅ -Pheno!	Ь	3.19	8.0	I.S.	Internal Standard
0861	d ₈ -Naphthalene	Ъ	1.39	1.0	I.S.	Internal Standard
1245	d ₂₀ -BHT	Ь	12.98	8.0	I.S.	Internal Standard
1268	N,N-Diethyl-3-pyridinecarboxamide	Ţ	0.70	0.4	BHT	Sample
1319	Diethyl phthalate	Ь	0.45	0.3	BHT	Contaminant
1342	d ₃₄ -Hexadecane	Ь	1.82	1.0	I.S.	Internal Standard
1351	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate		0.49	0.3	BHT	Contaminant
1359	Unknown 173, 55, 99, 84	n	1.46	6.0	BHT	Contaminant
1499	N-Butylbenzenesulphonamide	d	51.31	31.6	BHT	Sample
1519	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	L/d	5.91	2.0	I.S.	Int. Std. + Contaminant
0152	Tris-(chloropropyl)phosphate isomer	1	0.35	0.2	BHT	Contaminant
1585	Di-isobutyl phthalate	Ь	2.63	1.6	BHT	Contaminant
1648	2-Phenyltridecane	1	09:0	0.4	BHT	Sample
1665	Di-n-butyl phthalate	Ь	86.0	9.0	BHT	Contaminant
2108	Di-(2-ethylhexyl) phthalate	Ь	6.26	15.2	Sq	Contaminant
2178	d ₆₂ -Squalane	Ь	3.29	8.0	S	Internal Standard

Internal standards used Bz=de-Benzene, Cleds-Chlorobenzene, Xy=d10-p-Xytene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-d8-buty-d4-methyphanol, Hx=d3-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: # . 4 . Fame


Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. She During

J. Dunning Laboratory Manager

Authorised By:

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 13/11/68

General Survey GCMS Analysis

 Contact Name:
 P Jackson
 Sample Code:
 Laboratory blank

 Client:
 WRc-NSF
 Sample Type:
 Bottled water

 Client Reference:
 Samples Received 02/12/08
 Data System Code:
 S0062.2

 WRc-NSF Reference:
 N22673
 Associated Blank:
 n/a

 WRc-NSF Contract No:
 14907-0
 Sample Volume:
 1 Litre

Method Ref: ORG042
Date Received 02-Dec-08
Date Analysed: 09-Dec-08
Page: 1 of 2

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/Bn)	Standard	Peak
0002	Actone	Ь	1.86	2.7	Bz	Contaminant
0024	2-Methyl-1,3-dioxolane	Ţ	1.21	1.7	Bz	Contaminant
0033	Methyl isopropyl ketone	1	0.65	6.0	Bz	Contaminant
		d	1.40	2.0	I.S.	Internal Standard
	Carbon tetrachloride	d	0.32	9.0	Bz	Contaminant
0055	Cyclohexane	Ь	7.87	11.2	Bz	Contaminant
0076	3-Penten-2-ol	1	0.77	1.1	Bz	Contaminant
2600	1,4-Dioxane	Ь	0.39	9.0	Bz	Contaminant
0209	Toluene	_ d	0.65	0.4	CI	Contaminant
0291	Butyl acetate	Ь	0.74	0.5	CI	Contaminant
0316	Diacetone alcohol	Ь	0.51	0.3	CI	Contaminant
0338	d ₅ -Chlorobenzene	d.	3.20	2.0	I.S.	Internal Standard
0385	d ₁₀ p-Xylene	Ь	1.68	1.0	l.S.	Internal Standard
0560	d ₅ -Phenol	_ d	4.00	8.0	I.S.	Internal Standard
0844	d ₈ -Naphthalene	Ь	2.00	1.0	I.S.	Internal Standard
	d ₂₀ -BHT	Ь	16.85	8.0	I.S.	Internal Standard
	Diethyl phthalate	Ь	0.20	0.1	BHT	Contaminant
1325	d ₃₄ -Hexadecane	Ь	2.60	1.0	I.S.	Internal Standard
1334	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate		0.76	0.4	BHT	Contaminant
1343	Unknown 173, 55, 99, 84	n	1.76	8.0	BHT	Contaminant
1507	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	6.64	2.0	I.S.	Int. Std. + Contaminant
1520	Tris-(chloropropyl)phosphate isomer	1	0.33	0.5	BHT	Contaminant
1577	Di-isobutyl phthalate	Ь	1.91	6.0	BHT	Contaminant
1643	2-Phenyltridecane	Ţ	0.44	0.2	BHT	Contaminant

Internal standards used. Bz=66-Benzene, Cl=65-Chlorobenzene, Xy=d10-p-Xylene, Po=65-Phenol, Na=68-Naphthalene, BHT = 420-26-dic-buty4-4-methylphenol, Hz=d34-Hexadecane. Ph=d10-Phenanthrene and Sq=d62-Squalane

General Survey GCMS Analysis

P Jackson WRc-NSF Contact Name:

Client:

N22673 14907-0

WRc-NSF Contract No: WRc-NSF Reference: Client Reference:

Data System Code: Associated Blank: Sample Code: Sample Type: Samples Received 02/12/08

Laboratory blank Bottled water S0062.2

1 Litre

Sample Volume:

02-Dec-08 09-Dec-08 **ORG042** Date Received Method Ref:

2 of 2

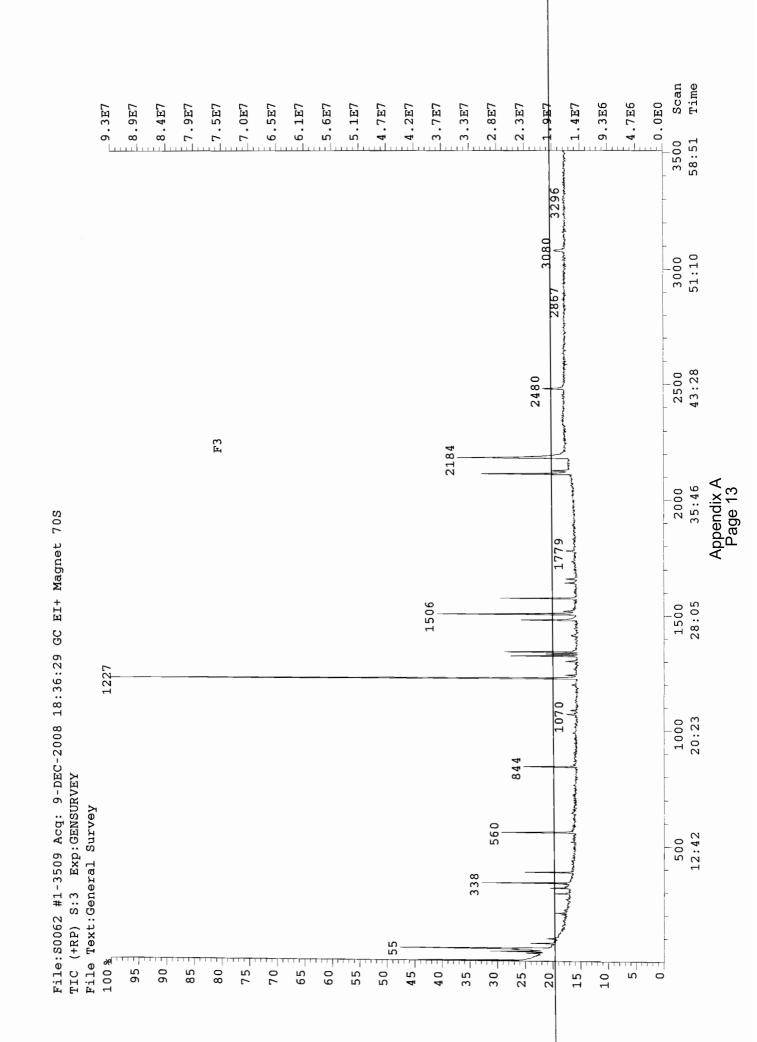
Date Analysed: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ug/l)	Standard	Peak
1665	Di-n-butyl phthalate	d	0.55	0.3	THB	Contaminant
2114	Di-(2-ethylhexyl) phthalate	ď	6.64	4.3	bS	Contaminant
2184	d ₆₂ -Squalane	ď	12.30	8.0	I.S.	Internal Standard

internal standards used: 82-of-Senzene, Cl=d5-Chlorobenzene, Xj=d10-pXylene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-d8-butyl-4-methyphenol, He-d34-Heusdecane : Ph=d10-Phenanthrene and Sq=d82-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.


Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H.A. Jame

Date: /3/1 /09 J. Dunning Laboratory Manager Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

General Survey GCMS Analysis

 Contact Name:
 P Jackson
 Sample Code:
 Item

 Client:
 WRc-NSF
 Sample Type:
 Client Reference:
 Data System Code:
 WRc-NSF Reference:

 WRc-NSF Reference:
 N22673
 Associated Blank:
 Sample Volume:

 WRc-NSF Contract No:
 14907-0
 Sample Volume:

Method Ref: ORG042

Date Received 02-Dec-08

Date Analysed: 09-Dec-08

Page: 1 of 2

F3 Groundwater S0062.3 S0062.2 1 Litre

	Parioumo	**	Con I ** Dook Aroo	0000	ntornoi	Origin of
ocali	Binodino		rean Alea	(ug/l)	Standard	Peak
0002	Acetone	Ь	2.25	3.3	Bz	Contaminant
0034	Methyl isopropyl ketone	 - -	0.57	8.0	Bz	Contaminant
0041		d	1.38	2.0	I.S.	Internal Standard
0020	Carbon tetrachloride	d	0.20	0.3	Bz	Contaminant
0055	Cyclohexane	d	7.86	11.4	Bz	Contaminant
7200	3-Penten-2-ol	L	26'0	1.4	Bz	Contaminant
8600	1,4-Dioxane	Ь	0.23	0.3	Bz	Contaminant
0209	Toluene	d	95.0	0.4	Cl	Contaminant
0292	Butyl acetate	d	1.7.0	0.5	IJ	Contaminant
0316	Diacetone alcohol	d	95.0	9.0	IJ	Contaminant
0338	d ₅ -Chlorobenzene	d	2.98	2.0	l.S.	Internal Standard
0385	d ₁₀ p-Xylene	Ь	1.56	1.0	I.S.	Internal Standard
0260	d ₅ -Phenol	Ь	3.74	8.0	LS.	Internal Standard
0844	d _s -Naphthalene	d	2.14	1.0	LS.	Internal Standard
	d ₂₀ -BHT	Ь	18.39	8.0	l.S.	Internal Standard
	ВНТ	Ь	0.47	0.2	BHT	Test Material
1301	Diethyl phthalate	Ь	0.20	0.1	BHT	Contaminant
1324	d ₃₄ -Hexadecane	d	2.60	1.0	I.S.	Internal Standard
1333	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate		92.0	0.3	BHT	Contaminant
1342	Unknown 173, 55, 99, 84	n	1.76	0.8	BHT	Contaminant
1481	N-Butylbenzenesulphonamide	Ь	3.39	1.5	BHT	Test Material
1506	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	_ 1∕d	8.02	2.0	l.S.	Int. Std. + Contaminant
1518	Tris-(chloropropyl)phosphate isomer	1	0.64	0.3	BHT	Contaminant
1577	Di-isobutyl phthalate	Ь	3.30	1.4	BHT	Contaminant
1643	2-Phenyltridecane	1	0.44	0.2	BHT	Contaminant
1660	Di-n-butyl phthalate	Р	08.0	0.3	BHT	Contaminant
1779	Unknown 42, 71, 41, 43	n	0.51	0.2	BHT	Test Material

Internal standate used. Bz=66-Bezzene, CledS-Chlorobertzene, Xy-d10-p-Xykene, Po=65-Phenol, Nard8-Appthibatiee, BHT = d202.6-dt-butyA-methyphenol, Hz=d3-Aexadecane Ph=d10-Phenanthrene and Sq=682-Squalane

General Survey GCMS Analysis

Data System Code: Sample Code: Sample Type: Samples Received 02/12/08 P Jackson WRc-NSF N22673 WRc-NSF Reference: Client Reference: Contact Name:

Client:

14907-0

WRc-NSF Contract No:

02-Dec-08 09-Dec-08 **ORG042** 2 of 2 Date Analysed: Date Received Method Ref: Page:

> S0062.3 S0062.2 1 Litre Associated Blank: Sample Volume:

F3 Groundwater

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/bn)	Standard	Peak
2113	Di-(2-ethylhexyl) phthalate	Ь	6.43	4.0	Sq	Contaminant
2126	Unknown 42, 41, 71, 27	n	0.95	9.0	bS	Test Material
2184	d ₆₂ -Squalane	Ь	12.89	8.0	l.S.	Internal Standard
2480	Unknown 42, 41, 71, 39	n	1.84	1.1	Sq	Test Material
3080	Unknown 42, 41, 71, 27	ח	1.34	0.8	Sq	Test Material

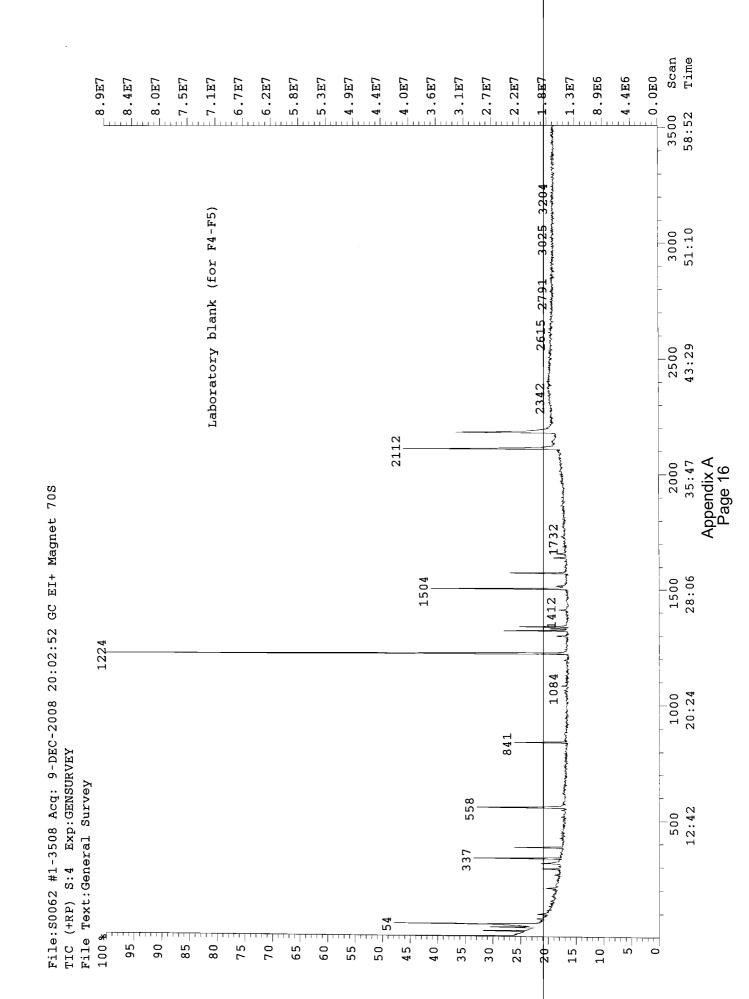
internal standards used 82-36-Benzene, Cl=45-Chlorobenzene, Xj=d10-p-Xylene, Po=d5-Phend, Na=d8-Naphthalene, BHT = 420-2,6-d8-buty 4-methyphend, Hzed34-Hexadecane. Phend10-Phenanthrene and Sq=d8-5-gualane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: # . A. Harmen


Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Laboratory Manager

Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: $13/\iota/09$

General Survey GCMS Analysis

Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 02/12/08 P Jackson WRc-NSF N22674 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

Laboratory blank Bottled water S0062.4 n/a

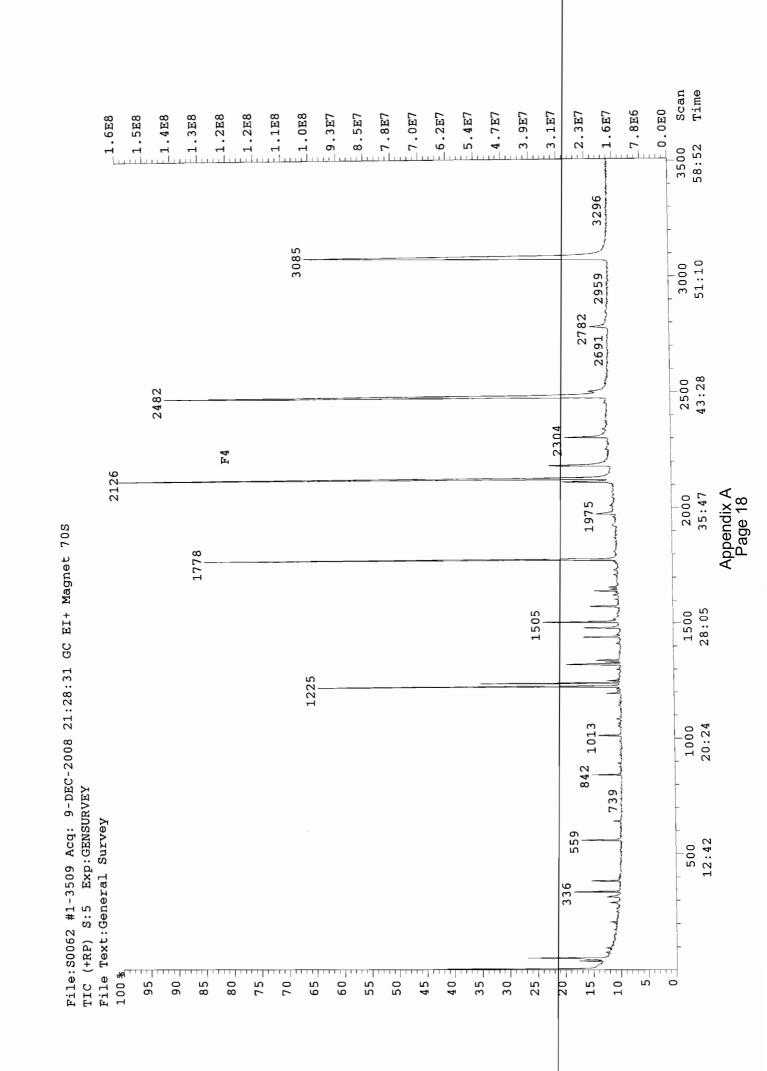
03-Dec-08 09-Dec-08 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

\prod
\dagger
P 1.37
م م
ep .
ja ja
tetrachlo xane sobutyl k
d ₆ -Benzene Carbon tetrachloride Cyclohexane Methyl isobutyl ketone

Internal standards used; BZ=46-Benzene, Cl=45-Chlorobenzene, Xy=d10-p-Xylene, Po=46-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-dit-buy/4-methylphenol, Hx=d34-Hexade-cane, Ph=d10-Phenanthrene and Sq=d62-Squalane **Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: A. A. James


Date: (4/1/09 Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked ⁺: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. And Dung

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

J. Dunning

Authorised By:

Laboratory Manager Appendix A Page 17

General Survey GCMS Analysis

F4 Groundwater S0062.5 S0062.4 1 Litre Sample Code:
Sample Type:
Data System Code:
Associated Blank:
Sample Volume: Samples Received 02/12/08 N22674 14907-0 P Jackson WRc-NSF WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client

Method Ref: ORG042
Date Received 03-Dec-08
Date Analysed: 09-Dec-08
Page: 1 of 2

Internal standards used: Bzzd6-Benzene, Cl=d5-Chlorobenzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d8-Naphthaene, BHT = d20-2,6-di-buty4-4methylphenol, Hx=d34-Hexadecane. Ph=d10-Phenanthrene and Sq=d62-Squalane

General Survey GCMS Analysis

Method Ref: Date Received Date Analysed: Page: F4 Groundwater S0062.5 S0062.4 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 02/12/08 P Jackson WRc-NSF N22674 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

03-Dec-08 09-Dec-08

2 of 2

ORG042

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/6n)	Standard	Peak
1642	2-Phenyftridecane	1	0.27	0.1	BHT	Contaminant
1650	Methyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate	T	99'0	6.0	THB	Test Material
1659	Di-n-butyl phthalate	d	0.54	0.2	BHT	Contaminant
1778	Unknown 71, 42, 55, 43 (M* 288)	n	36.80	14.1	BHT	Test Material
1975	Unknown 42, 41, 71, 72	n	3.21	1.2	BHT	Test Material
2113	Di-(2-ethylhexyl) phthalate	Ь	4.52	2.8	bS	Contaminant
2126	Unknown 42, 71, 41, 43 (M ⁺ 360)	n	58.70	36.9	bS	Test Material
2184	d ₆₂ -Squalane	Ь	12.71	8.0	I.S.	Internal Standard
2304	Unknown 42, 41, 71, 39	n	7.61	4.8	Sq	Test Material
2482	Unknown 42, 71, 41, 72 (M* 432)	n	96.50	2.09	Sq	Test Material
2504	Unknown 221, 250, 180, 132 (M* 340)	n	1.77	1.1	bS	Test Material
2782	Unknown 42, 41, 71, 39	n	3.64	2.3	Sq	Test Material
3085	Unknown 42, 41, 71, 27 (M ⁺ 504)	n	97.04	61.1	Sq	Test Material

Internal standards used: B2-86-2enzene, CI-d5-Chlorobenzene, Xy-d10-p-Xykene, Po-d5-Phenol, Na-d8-Naphthalene, BMT = 420-26-d8-buyl-4-methyphenol, Hr-d34-Hexadecane, Ph=d10-Phenanthrene and Sq-862-Squabne

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRC-NSF UKAS Accreditation Schedule are available on request.

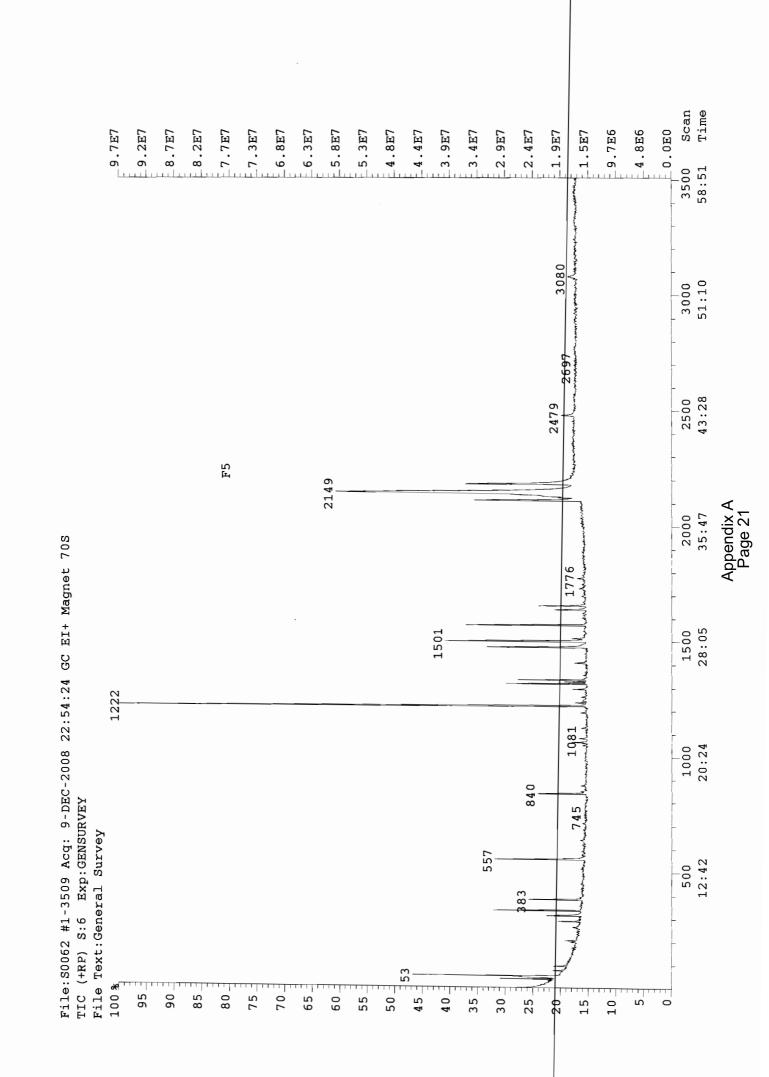
Reported By:

H · A · Tanaana

Samples were analysed as received unless otherwise stated.

Tests marked ": Tests not performed by WRC-NSF, approved subcontractor is UKAS accredited for this test.

Authorised By:


J. Dunning

Laboratory Manager

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 14/1/69

General Survey GCMS Analysis

F5 Groundwater S0062.6 S0062.4 1 Litre Sample Code: Sample Type: Data System Code: Associated Blank: Sample Volume: Samples Received 02/12/08 N22674 14907-0 P Jackson WRc-NSF WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042 03-Dec-08 09-Dec-08 1 of 2 Method Ref: Date Received Date Analysed: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/gn)	Standard	Peak
0039	d ₆ -Benzene	d	1.68	2.0	I.S.	Internal Standard
0048	Carbon tetrachloride	Ь	98.0	0.4	Bz	Contaminant
0053	Cyclohexane	Ь	8.32	6.6	Bz	Contaminant
9200	Methyl isobutyl ketone	1	68:0	0.5	Bz	Contaminant
9600	1,4-Dioxane	Ь	0.41	0.5	Bz	Contaminant
	Toluene	Ы	95.0	0.3	IJ	Contaminant
	Butyl acetate	Ь	0.88	0.5	I)	Contaminant
	Diacetone alcohol	ď	2.08	1.2	I)	Contaminant
0336	ds-Chlorobenzene	Ь	3.54	2.0	I.S.	Internal Standard
	d ₁₀₋ p-Xylene	Ь	2.06	1.0	I.S.	Internal Standard
0557	d ₅ -Phenol	d	4.17	8.0	'S'I	Internal Standard
0840	d _s -Naphthalene	d	2.28	1.0	I.S.	Internal Standard
1065	Dodecamethylcyclohexasiloxane	1	09'0	0.2	THB	Test Material
1081	2,4,4-Trimethylpentane-1,3-diol mono-isobutyrate	T	0.53	0.2	BHT	Test Material
1192	2,-Di-t-butyl-4-methylene-2,5-cyclohexadien-1-one	T	0.42	0.2	BHT	Test Material
1222	d ₂₀ -BHT	d	20.68	8.0	I.S.	Internal Standard
1235	ВНТ	Ь	0.54	0.2	THB	Test Material
1295	Diethyl phthalate	Ь	0.76	0.3	BHT	Contaminant
1319	d ₃₄ -Hexadecane	Ь	3.29	1.0	I.S.	Internal Standard
1327	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	I	1.09	0.4	THB	Contaminant
1336	Unknown 173, 55, 99, 84	N	3.35	1.3	THB	Contaminant
1409	Unknown 41, 55, 81, 43	n	0.52	0.2	BHT	Test Material
1476	N-Butylbenzenesulphonamide	Ы	6.65	2.6	BHT	Test Material
1501	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	9.24	2.0	I.S.	Int. Std. + Contaminant
1513	Tris-(chloropropyl)phosphate isomer	Ī	0.31	0.1	BHT	Contaminant
1573	Di-isobutyl phthalate	Ь	2.53	1.0	BHT	Contaminant
1640	2-Phenyltridecane	T	0.62	0.2	BHT	Contaminant
1657	Di-n-butyl phthalate	Ъ	0.55	0.2	BHT	Contaminant
2113	Di-(2-ethylhexyl) phthalate	Ь	9.88	5.5	Sq	Contaminant
2149	Unknown 42, 41, 71, 27	n	62.50	35.1	Sq	Test Material

Internal standards used B2-46-Benzene, Cl=d5-Chlotobenzene, Xj=d10-Xykene, Po-d5-Phenol, Na=68-Naphthalene, BHT = d20-2,6-48-busy-4-nethyphenol, Ho-d34-Hexadecane, Ph-d10-Phenanthrene and Sq-d62-Squalane

General Survey GCMS Analysis

F5 Groundwater S0062.4 S0062.6 1 Litre Sample Code: Sample Type: Data System Code: Associated Blank: Sample Votume: Samples Received 02/12/08 P Jackson WRc-NSF N22674 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

09-Dec-08 2 of 2 03-Dec-08 **ORG042** Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ng/l)	Standard	Peak
2183	d ₆₂ -Squalane	Ь	14.25	0.8	'S'I	Internal Standard
2479	Unknown 42, 41, 71, 27	n	1.14	9.0	bS	Test Material
3080	Unknown 42, 41, 71, 39	n	1.41	8.0	bS	Test Material

Internal standards used: BE-d6 Berzene, Cl=d5-Chlorobenzene, Xy=d10-p-Xylene, Po=d5-Penol, Na-d8-Naphbabene, BHT = d20-26-d8-busy4-methyppenol, Hx-d34-Hexadecane, Ph-d10-Phenaminene and Sq-d62-Squaken

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: J. A. Janus

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule. Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Authorised By:

J. Dunning

Date: 26/109

Laboratory Manager

Scan Time 8.6E6 4.3E6 8.6E7 2.6E7 0.0E0 8.2E7 7.8E7 7.3E7 6.9E7 6.5E7 6.0E7 5.6E7 5.2E7 3.9E7 3.0E7 2.2E7 1.7E7 4.8E7 4.3E7 3.5E7 1.3E7 3500 58:51 3390 3116 Laboratory blank (for F6-F7) 3000 51:10 2714 2500 43:28 2479 2183 Appendix A Page 24 35:46 2000 File:S0062 #1-3509 Acg:10-DEC-2008 01:47:47 GC EI+ Magnet 70S 1500 28:05 1505 395 1226 1084 1000 20:23 843 TIC (+RP) S:8 Exp:GENSURVEY File Text:General Survey 559 12:42 200 338 208 100% 25 90 85 80 95 70 09 55 50_ 40 75 65 45 35 30 0 15 10 S

Client:

ANALYSIS REPORT

General Survey GCMS Analysis

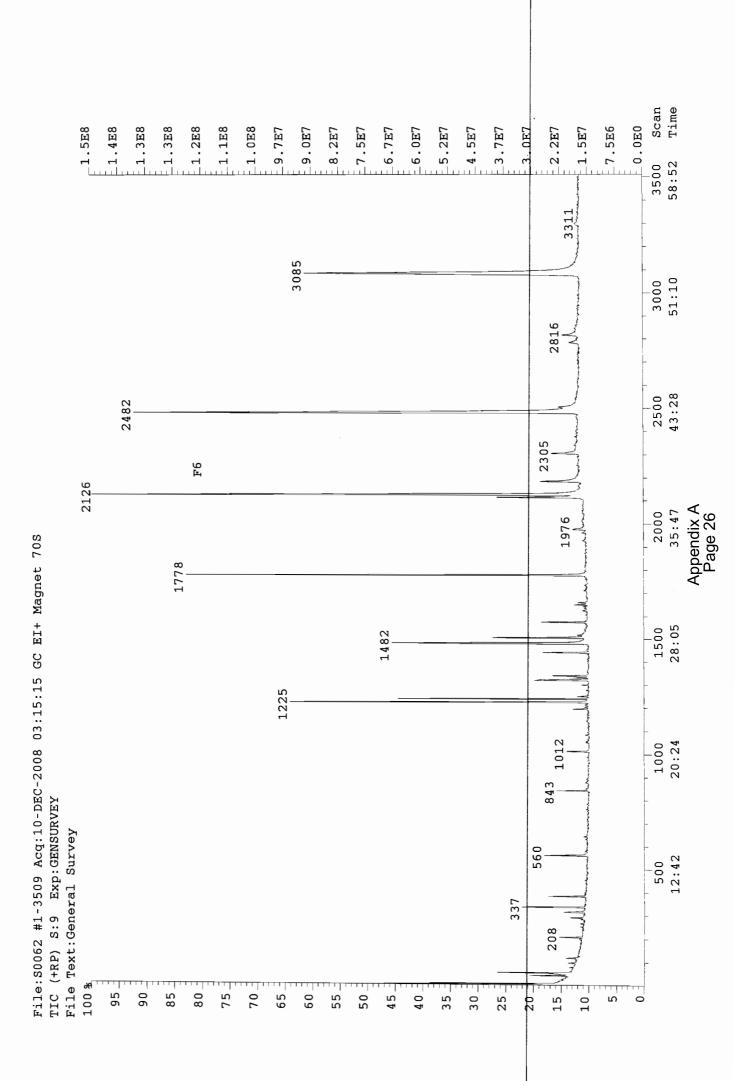
Laboratory blank Bottled water S0062.8 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 05/12/08 P Jackson WRc-NSF N22676 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

05-Dec-08 10-Dec-08 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

0002 Acetone 0024 2-Methyl-1,3- 0041 d ₆ -Benzene 0050 Carbon tetra 0054 Cyclohexane 0079 Methyl isobut 0098 1,4-Dioxane 0118 n-Heptane		4		(I/bn)	Standard	Peak
Acetone 2-Methyl d ₆ -Benze Carbon t Cyclohes Methyl is						
2-Methyl de-Benze Garbon t Carbon t Cyclohez Methyl is Methyl is 1,4-Diox.		Д.	2.29	2.7	Bz	Contaminant
		Τ	1.58	1.8	Bz	Contaminant
		ď	1.72	2.0	LS.	Internal Standard
	tetrachloride	d	7 06	68	B7	Contaminant
	xane	Ь	90.7	4.0	4	Contaminant
	Methyl isobutyl ketone	Ţ	0.36	6.0	Bz	Contaminant
	ane	d	0.42	9.0	Bz	Contaminant
	ne	d	0.77	6.0	Bz	Contaminant
		d	1.42	8.0	ರ	Contaminant
0292 Butyl acetate	etate	Ь	0.79	0.5	ರ	Contaminant
	ne alcohol	Ь	2.24	1.3	ರ	Contaminant
0338 ds-Chlord	obenzene	Ь	3.43	2.0	I.S.	Internal Standard
d ₁₀₋ p-Xyl	lene	Ь	2.12	1.0	LS.	Internal Standard
	lo	Ь	4.31	8.0	I.S.	Internal Standard
0843 d ₈ -Napht	thalene	Ь	2.46	1.0	I.S.	Internal Standard
1226 d ₂₀ -BHT		Ь	18.92	8.0	LS.	Internal Standard
1323 d ₃₄ -Hexa	adecane	Ь	2.81	1.0	I.S.	Internal Standard
1332 2,4,4-Trii	imethylpentane-1,3-diol di-isobutyrate	T	09:0	0.3	BHT	Contaminant
Unknowr		n	1.94	8.0	BHT	Contaminant
1505 d ₁₀ -Phen	nanthrene + Tris-(chloropropyl)phosphate isomer	Ρ/T	7.15	2.0	I.S.	Int. Std. + Contaminant
1517 Tris-(chlc	oropropyl)phosphate isomer	Τ	0.31	0.1	BHT	Contaminant
Di-isobut	tyl phthalate	Ь	1.74	0.7	BHT	Contaminant
1642 2-Phenyl	Itridecane	⊥	1.94	0.8	BHT	Contaminant
1659 Di-n-buty	yl phthalate	Ь	0.31	0.1	BHT	Contaminant
2113 Di-(2-eth	lythexyl) phthalate	 	2.99	4.0	bg	Contaminant
2183 d ₆₂ -Squa	alane	Ь	6.03	8.0	I.S.	Internal Standard

Internal standards used; Bz=46-Benzene, Cl=dS-Chlotobenzene, Xy=d10-p-Xyaene, Po=46-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-d8-buyf-4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=462-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown


Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: A. A. Famen

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

J. Dunning Laboratory Manager Authorised By:

Date: 20/1/09

General Survey GCMS Analysis

 Contact Name:
 P Jackson
 Sample Code:
 F6

 Client:
 Sample Type:
 Groundwater

 Client Reference:
 Samples Received 05/12/08
 Data System Code:
 S0062.9

 WRc-NSF Reference:
 N22676
 Associated Blank:
 S0062.8

 WRc-NSF Contract No:
 14907-0
 Litre

Method Ref: ORG042
Date Received 05-Dec-08
Date Analysed: 10-Dec-08
Page: 1 of 2

2000	Paris and C	* - 400	Con I ** Book And		10000	, , , , ,	
Scall	Binodino	7.1100	rean Alea	(ng/)	Standard	Peak	
0002	Tetrahydrofuran	۵	8.76	8.9	Bz		
0002	iso-Butanol	⊥	5.30	5.4	Bz	Test Material	
0040	d ₆ -Benzene	Ь	1.97	2.0	I.S.	Internal Standard	
0049	Carbon tetrachloride	d	0.46	0.5	Bz	Contaminant	
0054	Cyclohexane	Ы	69.9	6.8	Bz	Contaminant	
8200	Methyl isobutyl ketone	Ţ	0.27	0.3	Bz	Contaminant	
2600	1,4-Dioxane	٦	0:30	0.3	Bz	Contaminant	
	n-Heptane	Ь	0.56	9.0	Bz	Contaminant	
	Toluene	Ь	1.47	8.0	I)	Contaminant	
	Butyl acetate	Ь	69'0	0.4	l)	Contaminant	
	Diacetone alcohol	Ь	1.92	1.0	ਠ	Contaminant	
	d ₅ -Chlorobenzene	Ь	3.75	2.0	S.I	Internal Standard	
	d ₁₀₋ p-Xylene	Ь	2.23	1.0	'S'1	Internal Standard	
0560	d _s -Phenol	д.	4.81	8.0	I.S.	Internal Standard	
0843	d _s -Naphthalene	Ь	2.12	1.0	'S'I	Internal Standard	
1013	Unknown 101, 42, 54,55	n	1.87	0.7	THB	Test Material	
1196	2,6-Di-t-butyl-2,5-cyclohexadiene-1-one	d.	0.91	0.3	BHT	Test Material	
1225	d ₂₀ -BHT	Ь	21.46	8.0	I.S.	Internal Standard	
1239	BHT	Ь	12.16	4.5	THB	Test Material	
1250	1,6-Dioxacyclododecane-7,12,-dione	1	0.87	6.3	THB	Test Material	
1299	Diethyl phthalate	Ь	0.50	0.2	THB	Contaminant	
1320	Unknown 71, 55, 41, 43 (M ⁺ 216?)	n	099	2.5	THB	Test Material	
1323	d ₃₄ -Hexadecane	Ь	00:0	1.0	'S'I	Internal Standard	
1331	2,4,4-Trimethylpentane-1,3-diol di isobutyrate	Ţ	68 0	0.3	BHT	Contaminant	
1340	Unknown 173, 55, 99, 84	n	2.66	1.0	THB	Contaminant	
1441	Unknown 55, 42, 101, 41 (M* 229)	n	3.52	1.3	BHT	Test Material	
1482	N-Butylbenzenesulphonamide	Ь	27.82	10.4	BHT	Test Material	
1505	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	Ρ/T	8.30	2.0	l.S.	Int. Std. + Contaminant	
1517	Tris-(chloropropyl)phosphate isomer	T	99.0	0.2	BHT	Contaminant	
1576	Di-isobutyl phthalate	Р	3.27	1.2	BHT	Contaminant	
1650	Methyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate	⊢	0.79	0.3	BHT	Test Material	

Internal standads used Bz=65 Benzene, CI=55-Chiolobenzene, Xy=410-p-X/viene, Po=45-Phenol, Na=68-Naphthalene, BHT = 420-25-41 butyl-4-nebryphenol, Na=434-Heuadecane, Ph=410-Phenamente and Sq=462-Squalene

General Survey GCMS Analysis

F6 Groundwater S0062.9 S0062.8 Sample Code: Sample Type: Data System Code: Associated Blank: Sample Volume: Samples Received 05/12/08 P Jackson WRc-NSF N22676 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042 05-Dec-08 10-Dec-08 2 of 2 Date Received Date Analysed: Method Ref: Page:

1 Litre

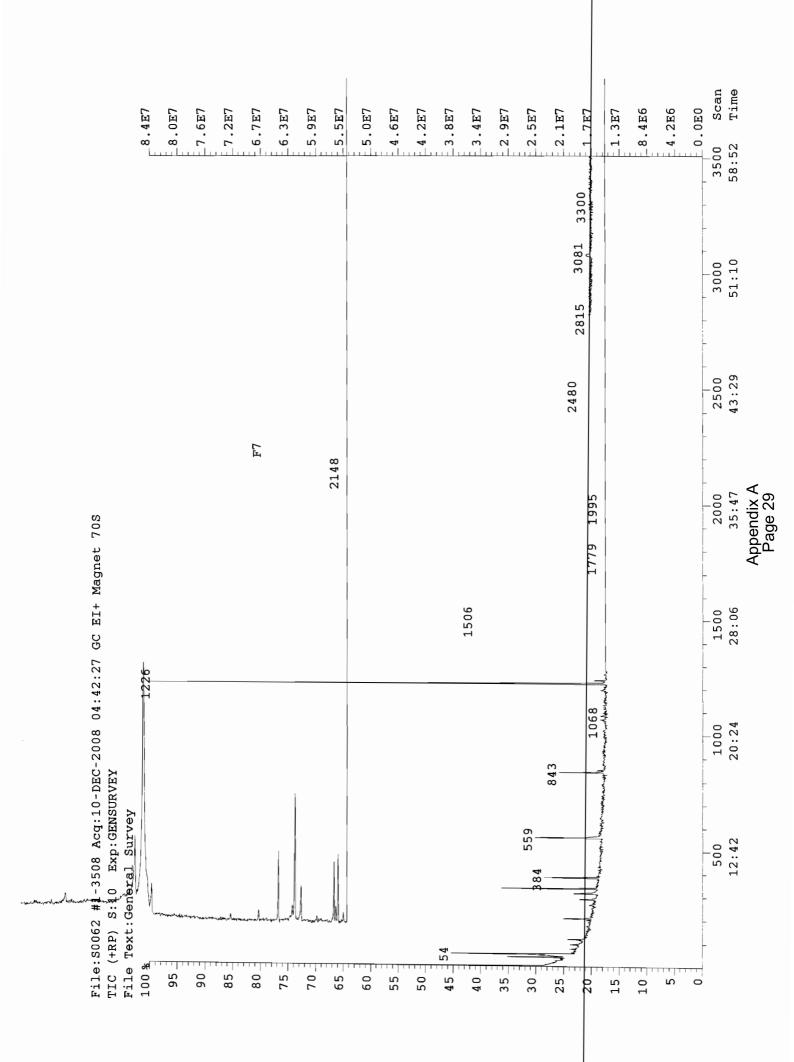
Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/gn)	Standard	Peak
1659	Di-n-butyl phthalate	d	0.65	0.2	BHT	Contaminant
1778	Unknown 71, 42, 55, 43 (M ⁺ 288)	n	34.57	12.9	BHT	Test Material
1976	Unknown 42, 41, 71, 72	n	2.53	6.0	BHT	Test Material
2113	Di-(2-ethylhexyl) phthalate	Ь	9.91	10.0	Sg	Contaminant
2126	Unknown 42, 71, 41, 43 (M ⁺ 360)	n	60.38	61.1	Sq	Test Material
2183	d ₆₂ -Squalane	Ь	7.91	8.0	I.S.	Internal Standard
2305	Unknown 42, 41, 71, 39	n	4.88	4.9	Sq	Test Material
2482	Unknown 42, 71, 41, 72 (M ⁺ 432)	n	94.94	96.0	Sq	Test Material
2504	Unknown 221, 250, 180, 132 (M* 340)	n	1.42	1.4	Sq	Test Material
2784	Unknown 42, 41, 71, 39	n	2.94	3.0	Sq	Test Material
2816	Unknown 57, 45, 101, 41	Ŋ	3.83	3.9	Sq	Test Material
3085	Unknown 42, 41, 71, 27 (M* 504)	n	90.93	92.0	Sq	Test Material
3311	Unknown 57, 45, 41, 29	n	0.96	1.0	Sq	Test Material

nternal standards used Bz=65-Benzene, Cl=45-Chlorobenzene, Xy=d10-p-Xylene, Po=65-Phenol, Na=68-Naphthislene, BHT = 420-25-dit-buly4-4-methylphenol, Hx=d34-Hexadecane. Phed10-Phenonthrene and Sq=d62-Squalene

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. H. A. Hami Reported By:

Samples were analysed as received unless otherwise stated.


J. Dunning
Laboratory Manager Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

20/1/05 Date:

General Survey GCMS Analysis

Sample Code: F7
Sample Type: Groundwater
Data System Code: \$0062.10
Associated Blank: \$0062.8
Sample Volume: 1 Litre Samples Received 05/12/08 N22676 14907-0 P Jackson WRc-NSF WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042	05-Dec-08	10-Dec-08	1 of 2
Method Ref:	Date Received	Date Analysed:	Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/bn)	Standard	Peak
0040	d ₆ -Benzene	Ь	1.39	2.0	I.S.	Internal Standard
0049	Carbon tetrachloride	Ь	0.29	9.4	Bz	Contaminant
0054	Cyclohexane	d	5.49	6.7	Bz	Contaminant
0077	Methyl isobutyl ketone	Ţ	0.16	0.2	Bz	Contaminant
9600	1,4-Dioxane	d	0.28	9.4	Bz	Contaminant
0118	n-Heptane	Ь	0.51	0.7	Bz	Contaminant
0207	Toluene	Ь	1.12	0.7	<u>ا</u> ت	Contaminant
0290	Butyl acetate	Ь	69.0	9.4	IJ	Contaminant
0315	Diacetone alcohol	d	1.13	0.7	IJ	Contaminant
0337	d ₅ -Chlorobenzene	d	3.11	2.0	l.S.	Internal Standard
	d ₁₀₋ p-Xylene	Ь	1.82	1.0	I.S.	Internal Standard
	d ₅ -Phenol	d	3.15	8.0	l.S.	Internal Standard
0843	d ₈ -Naphthalene	Ь	1.75	1.0	I.S.	Internal Standard
1226	d ₂₀ -BHT	Ь	17.75	8.0	I.S.	Internal Standard
1240	BHT	Ь	0.41	0.2	BHT	Test Material
1300	Diethyl phthalate	Ь	0.38	0.2	BHT	Contaminant
1323	d ₃₄ -Hexadecane	Ь	2.70	1.0	l.S.	Internal Standard
1332	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	T	0.53	0.2	BHT	Contaminant
1340	Unknown 173, 55, 99, 84	n	2.83	1.3	BHT	Contaminant
1480	N-Butylbenzenesulphonamide	Ы	2.64	1.2	BHT	Test Material
1506	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	7.71	2.0	1.S.	Int. Std. + Contaminant
1517	Tris-(chloropropyl)phosphate isomer	Ţ	0.50	0.2	BHT	Contaminant
1576	Di-isobutyl phthalate	Ь	2.94	1.3	BHT	Contaminant
1660	Di-n-butyl phthalate	Ь	0.57	0.3	BHT	Contaminant

Internal standar's used; 82=46-Benzene, Cl=d5-Chlorobenzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-df-bug/4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane

General Survey GCMS Analysis

Groundwater S0062.10 S0062.8 1 Litre

Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 05/12/08 P Jackson WRc-NSF 14907-0 N22676 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

05-Dec-08 10-Dec-08 **ORG042** 2 of 2 Date Analysed: Date Received Method Ref: Page:

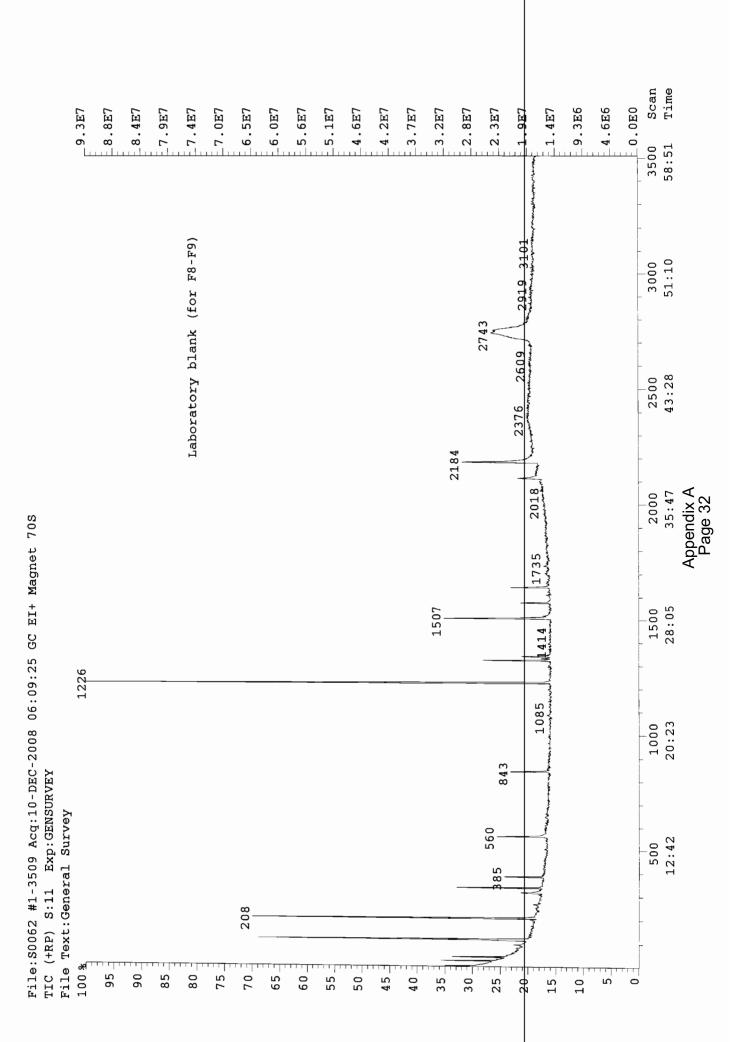
Origin of Internal Standard **Fest Material** Contaminant Test Material Standard Internal ၓ Sq တ Conc. (I/Bn) 5.0 69.1 8 Con.L** Peak Area 65.33 1.92 7.56 0.97 Δ Δ. Compound Di-(2-ethylhexyl) phthalate Unknown 42, 41, 71, 27 Jnknown 42, 41, 71, 27 d₆₂-Squalane Scan 2113 2148 2183 2480

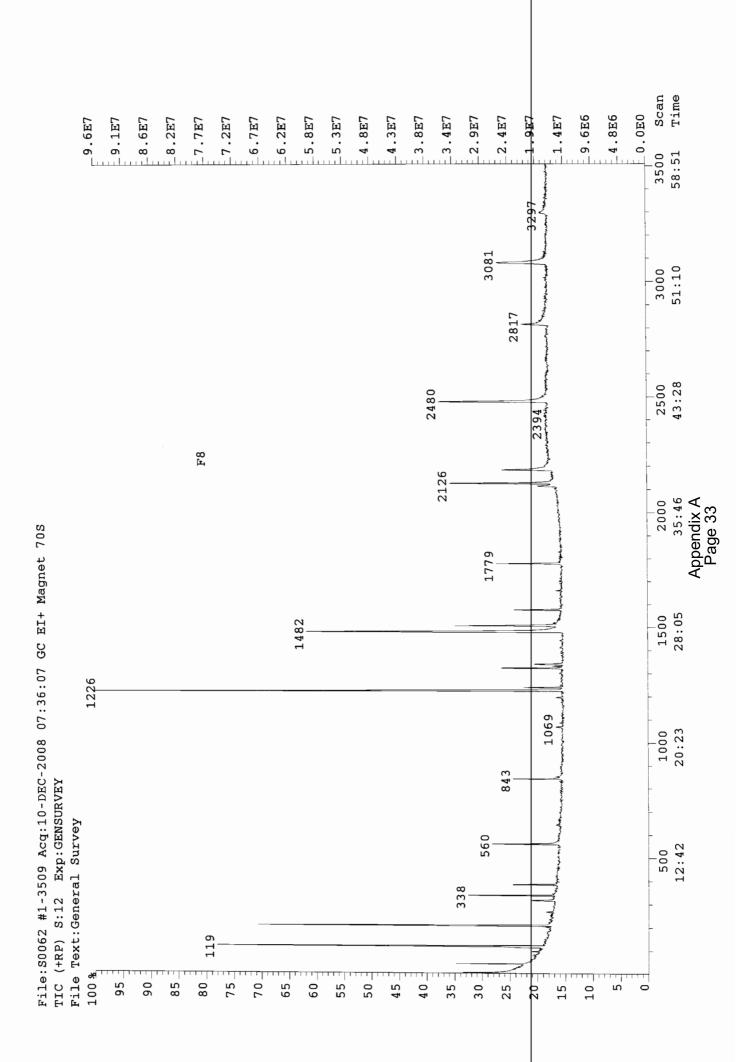
Internal standards used: Bz=d-Benzene, Ci=d5-Chlorobenzene, Xy=d10-p-Xydene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-26-dit-buyf4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane **Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. H. Henry


Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. Date: J. Dunning Laboratory Manager


Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

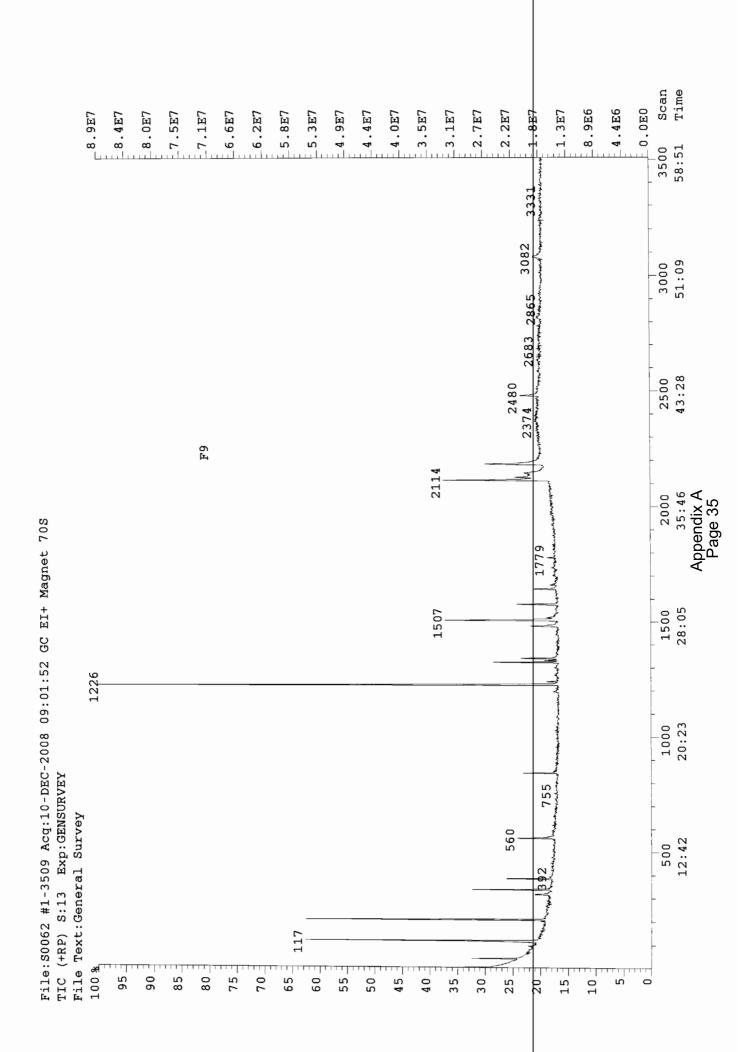
60/1/82

General Survey GCMS Analysis

Groundwater S0062.12 S0062.11 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 08/12/08 P Jackson WRc-NSF 14907-0 N22677 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

08-Dec-08 10-Dec-08 **ORG042** 1 of 1 Date Received Date Analysed: Method Ref: Page:

Coan	pullodado	** 400	Con I ** IDook Area	Judy	Informal	Origin of
1000	pipodiioo	1	can Alca	(l/bi)	Standard	Peak
0002	Acetone	Ь	1.17	1.2	Bz	
0041	d ₆ -Benzene	Ь	1.94	5.0	.S.I	Internal Standard
0119	n-Heptane	Ь	14.89	15.4	Bz	Contaminant
	Toluene	ď	12.19	7.1	Ö	Contaminant
	Diacetone alcohol	Ь	1.53	6.0	IS	Contaminant
0338	d ₅ -Chlorobenzene	ď	3.41	2.0	S.I	Internal Standard
0384	d ₁₀ p-Xylene	ď	2.03	1.0	'S'I	Internal Standard
	d ₅ -Phenol	Ь	4.08	8.0	S'I	Internal Standard
	d ₈ -Naphthalene	Ь	1.94	1.0	'S'I	Internal Standard
	d ₂₀ -BHT	Ь	19.61	8.0	I.S.	Internal Standard
1240	BHT	Ь	1.64	2.0	THB	Test Material
	d ₃₄ -Hexadecane	Ь	3.01	1.0	·Si	Internal Standard
	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	T	0.36	0.1	BHT	Contaminant
1340	Unknown 173, 55, 99, 84	n	1.71	2.0	THB	Contaminant
	N-Butylbenzenesulphonamide	Ь	24.80	10.1	BHT	Test Material
1506	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	6.63	2.0	ST	Int. Std. + Contaminant
	Tris-(chloropropyl)phosphate isomer		0.30	0.1	BHT	Contaminant
1570	Di-isobutyl phthalate	Ь	2.13	6.0	BHT	Contaminant
	Unknown 71, 42, 55, 43 (M ⁺ 288)	n	3.59	1.5	BHT	Test Material
2114	Di-(2-ethylhexyl) phthalate	Ь	1.63	2.0	Sq	Contaminant
2126	Unknown 42, 71, 41, 43 (M* 360)	n	7.10	8.8	Sq	Test Material
2184	d ₆₂ -Squalane	Ь	6.46	8.0	LS.	Internal Standard
2480	Unknown 42, 71, 41, 72 (M* 432)	n	12.04	14.9	Sq	Test Material
2817	Unknown 57, 45, 101, 41	n	7.36	9.1	Sq	Test Material
3081	Unknown 42, 41, 71, 27 (M* 504)	n	10.03	12.4	Sq	Test Material
3297	Unknown 57, 45, 41, 101 [M* 405?]	n	96'0	1.2	Sq	Test Material


Internal standards used. Bz-ad5-Bertzere, CI=d5-Chlorobertzere, Xi=d10-p-Xylere, P0=d5-Phenol, Na=d8-kaphthalene, BHT = d20-2,8-df-buty-4-methylphenol, Hzed4-Hexadecare. Ph=d10-Phenarthrene and Sq=d82-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Reported By: H. A. James Samples were analysed as received unless otherwise stated.

Date: 28/1/09 Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Authorised By:

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

General Survey GCMS Analysis

Samples Received 08/12/08 P Jackson WRc-NSF N22677 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

Groundwater S0062.13 S0062.11 Sample Code: Sample Type:

ORG042 Date Analysed: Date Received Method Ref: Page:

08-Dec-08 10-Dec-08 1 of 1

> 1 Litre Data System Code: Associated Blank: Sample Volume:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ng/l)	Standard	Peak
0039	d ₆ -Benzene	d	1.35	2.0	I.S.	Internal Standard
0117	In-Heptane	d	10.52	15.6	Bz	Contaminant
0207	Toluene	Ь	11.28	8.1	CI	Contaminant
0316	Diacetone alcohol	Ь	0.82	9.0	CI	Contaminant
0337	d ₅ -Chlorobenzene	Ь	2.79	2.0	I.S.	Internal Standard
0384	d ₁₀₋ p-Xylene	Ь	1.56	1.0	I.S.	Internal Standard
0990	d ₅ -Phenol	Ь	2.46	8.0	I.S.	Internal Standard
0843	d _s -Naphthalene	Ь	1.49	1.0	I.S.	Internal Standard
1226	HAb	۵	18 27	۷	3	Infernal Standard

3082	Unknown 42, 41, 71, 39	⊃	1.51	1.6	δ	Test Material

Int. Std. + Contaminant

2.0 0.2 0.5 0.5 8.7

1.96 8.08 0.41 1.99

F ᅴᅀ

N-Butylbenzenesulphonamide d₁₀-Phenanthrene + Tris-(chloropropyl)phosphate isomer

Tris-(chloropropyl)phosphate isomer

Di-isobutyl phthalate 2-Phenyltridecane

1518 1577 1643 1779

2,4,4-Trimethylpentane-1,3-diol di-isobutyrate

d₃₄-Hexadecane

Unknown 173, 55, 99, 84

1332 1341

1481 1507

1240 1324 8.0 6.0

1.91

0.44 2.66

Internal Standard

Contaminant Contaminant Test Material Internal Standard

ပ္တ S

> 8.0 6

8.26 7.61 1.76

Ъ

Test Material

Fest Material Fest Material

Contaminant

Sq

11.35

۵

Di-(2-ethylhexyl) phthalate

2114 2123-2165

Unknown 42, 71, 41, 72 Unknown 42, 41, 71, 43

d₆₂-Squalane

2184 2480

Unknown 71, 42, 41, 43

1.14

م م

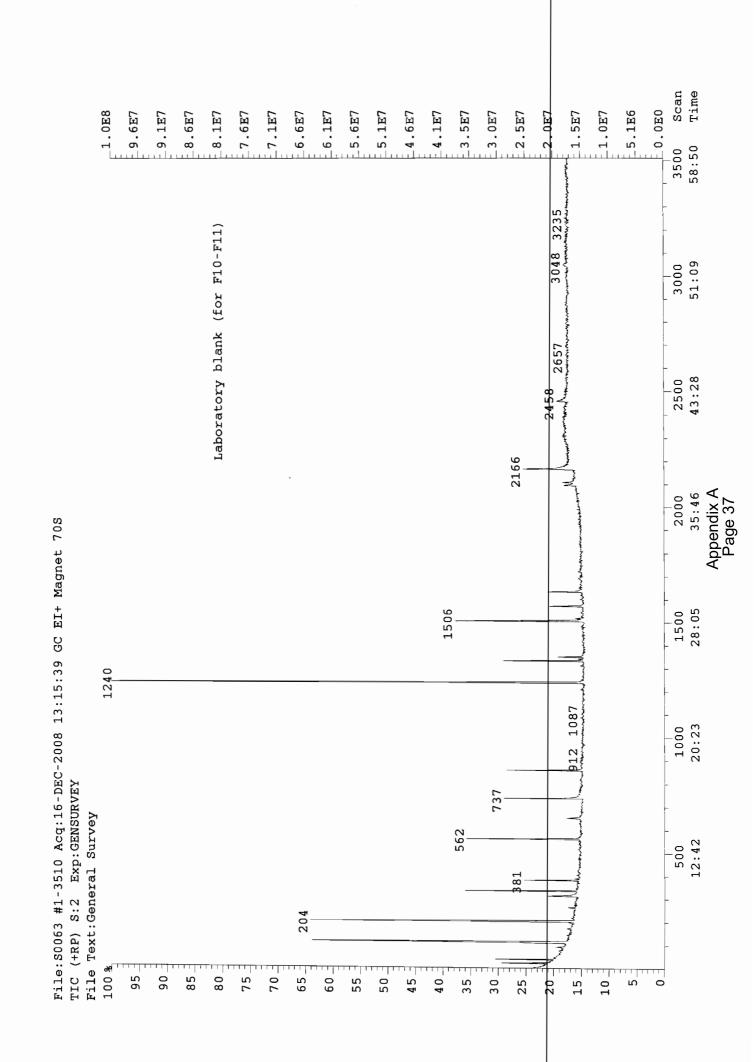
Contaminant

6.0

Sontaminant Contaminant

> Internal standards used; Bz=d6-Benzene, Cl=d5-Chlorobenzene, Xy=d10-p-Xyene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-df-buyf-4-methylphenol, tx=d34-Hexadecane Ph=d10-Phenanthrene and Sq=d62-Squalane **Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.


Reported By: A. A. Farmer

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. de Dening Authorised By:

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 22/109

J. Dunning Laboratory Manager Appendix A Page 36

General Survey GCMS Analysis

Laboratory blank Bottled water S0063.2 1 Litre n/a Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 11/12/08 P Jackson WRc-NSF N22679 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

Method Ref: ORG042

Date Received 11-Dec-08

Date Analysed: 16-Dec-08

Page: 1 of 1

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of Peak
0021	2-Methyl-1,3-dioxolane	۰	1.53	1.5	Bz	Contaminant
0037	d ₆ -Benzene	۵	2.07	2.0	LS.	Internal Standard
0115	n-Heptane	d.	15.83	15.3	Bz	Contaminant
0204	Toluene	۵	14.18	6.3	l)	Contaminant
0312	Diacetone alcohol	Ь	2.39	1.1	CI	Contaminant
0334	d ₅ -Chlorobenzene	۵	4.52	2.0	LS.	Internal Standard
0381	d ₁₀₋ p-Xylene	Ь	2.76	1.0	l.S.	Internal Standard
0562	d _s -Phenol	Ь	3.53	8.0	l.S.	Internal Standard
0652	2-Ethylhexanol	۵	68'0	9.4	Ö	Contaminant
0737	Silicon grease	1	4.18	1.8	Ö	Contaminant
0859		Ь	3.24	1.0	I.S.	Internal Standard
1240	d ₂₀ -BHT	Ь	22.72	8.0	LS.	Internal Standard
1334	d ₃₄ -Hexadecane	Ь	3.67	1.0	I.S.	Internal Standard
1342	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	T	0.17	0.1	BHT	Contaminant
1351	Unknown 173, 55, 99, 84	n	1.19	0.4	BHT	Contaminant
1506	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	ЪИ	8.63	2.0	l.S.	Int. Std. + Contaminant
1517	Tris-(chloropropyl)phosphate isomer	1	0.28	0.1	BHT	Contaminant
1572	Di-isobutyl phthalate	Ь	1.42	0.5	BHT	Contaminant
1635	2-Phenyltridecane	1	2.00	0.7	BHT	Contaminant
2096	Di-(2-ethylhexyl) phthalate	Ь	1.07	1.1	Sq	Contaminant
2108	Unknown 42, 71, 41, 43	n	92'0	8.0	Sq	Contaminant
2166	d ₆₂ -Squalane	d	11.7	8.0	I.S.	Internal Standard

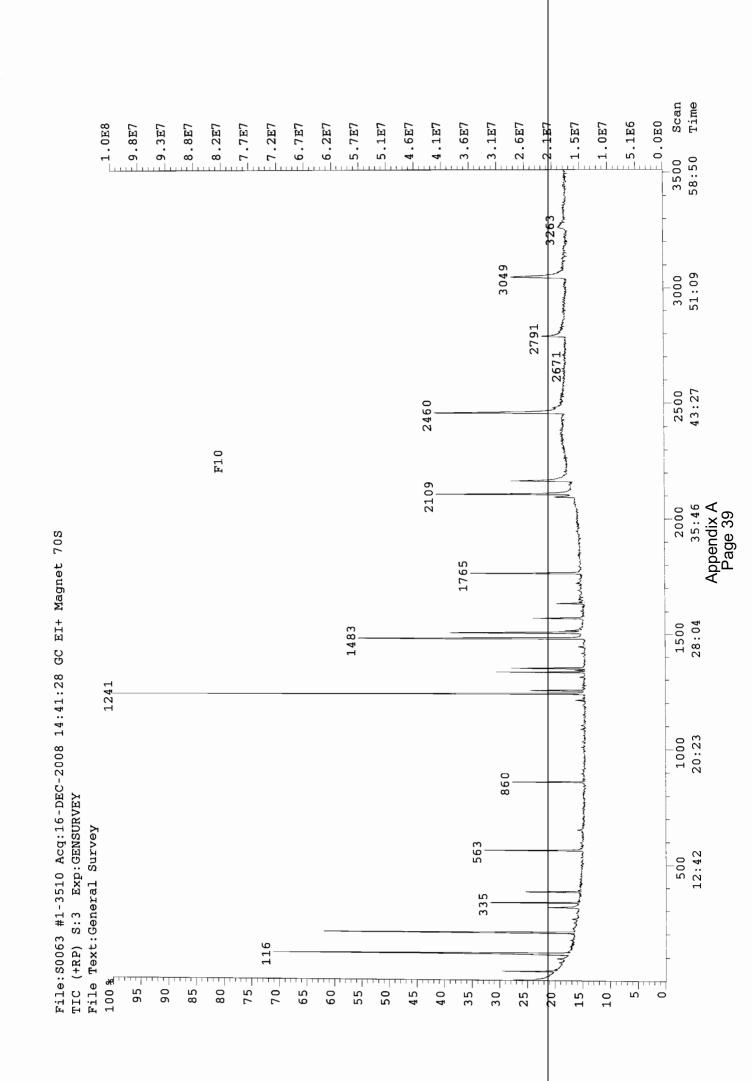
Internal standards used: Bz=86-Benzene, Cl=65-Chlorobenzene, Xy=d10-p-Xylene, Po=45-Phenol, Na=48-Haphthalene, BHT = 420-2,6-46-buyl-4-methylphenol, Nb=434-Hexadecane. Ph=410-Phenanthrene and Sq=462-Squalane

Samples were analysed as received unless otherwise stated.
Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.
Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. A. Taun

Authorised By:

J. Dunning


Laboratory Manager

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: (0/2/09

^{**}Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

General Survey GCMS Analysis

F10 Groundwater Sample Code: Sample Type: Data System Code: Associated Blank: Sample Volume: Samples Received 11/12/08 N22679 P Jackson WRc-NSF 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042 11-Dec-08 16-Dec-08 1 of 2 Date Received Date Analysed: Page : Method Ref:

> S0063.3 S0063.2 1 Litre

Scan	Compound	Con I **	Con I ** Peak Area	Conc	Internal	Origin of
				(l/bn)	Standard	Peak
0039	d ₆ -Benzene	d	2.20	2.0	'S'I	Internal Standard
0094	1,4-Dioxane	d	0.31	0.3	Bz	Contaminant
0116	n-Heptane	d	17.64	16.0	Bz	Contaminant
0206	Toluene	d	13.72	6.4	IJ	Contaminant
0313	Diacetone alcohol	Ь	2.24	1.0	IJ	Contaminant
0335	d ₅ -Chlorobenzene	d	4.31	2.0	I.S.	Internal Standard
0383	d ₁₀₋ p-Xylene	Ь	2.48	1.0	'S'I	Internal Standard
0563	d ₅ -Phenol	Ь	5.22	8.0	'S'I	Internal Standard
0652	2-Ethylhexanol	Ь	0.46	0.2	IJ	Contaminant
0860	d _s -Naphthalene	Ь	2.92	1.0	I.S.	Internal Standard
1213	2,6-Di-t-butyl-4-methylene-2,5-cyclohexadien-1one	⊥	0.38	0.1	BHT	Test Material
1240	d ₂₀ -BHT	d	21.27	8.0	I.S.	Internal Standard
1255	ВНТ	d	2.34	6.0	THB	Test Material
1312	Diethyl phthalate	Ь	0.28	0.1	BHT	Contaminant
	d ₃₄ -Hexadecane	Ь	3.87	1.0	I.S.	Internal Standard
	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	1	0.43	0.2	BHT	Contaminant
1351	Unknown 173, 55, 99, 84	n	3.36	1.3	BHT	Contaminant
1483	N-Butylbenzenesulphonamide	Ь	15.16	5.7	BHT	Test Material
1507	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	9.88	2.0	I.S.	Int. Std. + Contaminant
1516	Tris-(chloropropyl)phosphate isomer	1	0.86	0.3	BHT	Contaminant
1572	Di-isobutyl phthalate	Ь	2.38	6.0	THB	Contaminant
1635	2-Phenyttridecane	T	1.39	0.5	BHT	Contaminant
1765	Unknown 71, 42, 55, 73 (M* 288)	n	5.74	2.2	BHT	Test Material
2096	Di-(2-ethylhexyl) phthalate	Ь	1.90	1.7	Sq	Contaminant
2109	Unknown 71, 42, 43, 55 (M* 360)	n	10.57	9.6	Sq	Test Material
2167	d ₆₂ -Squalane	Ь	8.77	8.0	I.S.	Internal Standard

Internal standards used: BZ=05-Benzene, Cl=6-Chlorobenzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-25-di-buyl-4-methylphenol, Hx=d3-Heudecane, Ph=d10-Phenonthrene and Sq=d62-Squalane

General Survey GCMS Analysis

Groundwater S0063.3 S0063.2 1 Litre

 Contact Name:
 P Jackson
 Sample Code:

 Client:
 WRc-NSF
 Sample Type:

 Client Reference:
 Samples Received 11/12/08
 Data System Code:

 WRc-NSF Reference:
 N22679
 Associated Blank:

 WRc-NSF Contract No:
 14907-0
 Sample Volume:

Method Ref: ORG042

Date Received 11-Dec-08

Date Analysed: 16-Dec-08

Page: 2 of 2

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal Standard	Origin of Peak
2460	Unknown 42, 71, 41, 72 (M ⁺ 432)	n	17.69			Test Material
2791	Unknown 57, 45, 101, 41	n	6.55	0.9	bS	Test Material
3049	Unknown 42, 71, 41, 39 (M* 504)	n	12.79	11.7	Sq	Test Material

Internal standards used: Bz=d6-Berzene, CF=d5-Chorobenzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = 20-2,6-dit-buly.4-metrylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. A. Tenner

Tests marked @: Tests not performed by WRC-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked ": Tests not performed by WRC-NSF, approved subcontractor is UKAS accredited for this test.

Authorised By:

Date: LO Z O G

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

J. Dunning Laboratory Manager

General Survey GCMS Analysis

Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 11/12/08 P Jackson WRc-NSF N22679 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

Page:

F11 Groundwater

S0063.4 S0063.2 1 Litre

ORG042 11-Dec-08 16-Dec-08 1 of 1 Date Analysed: Date Received Method Ref:

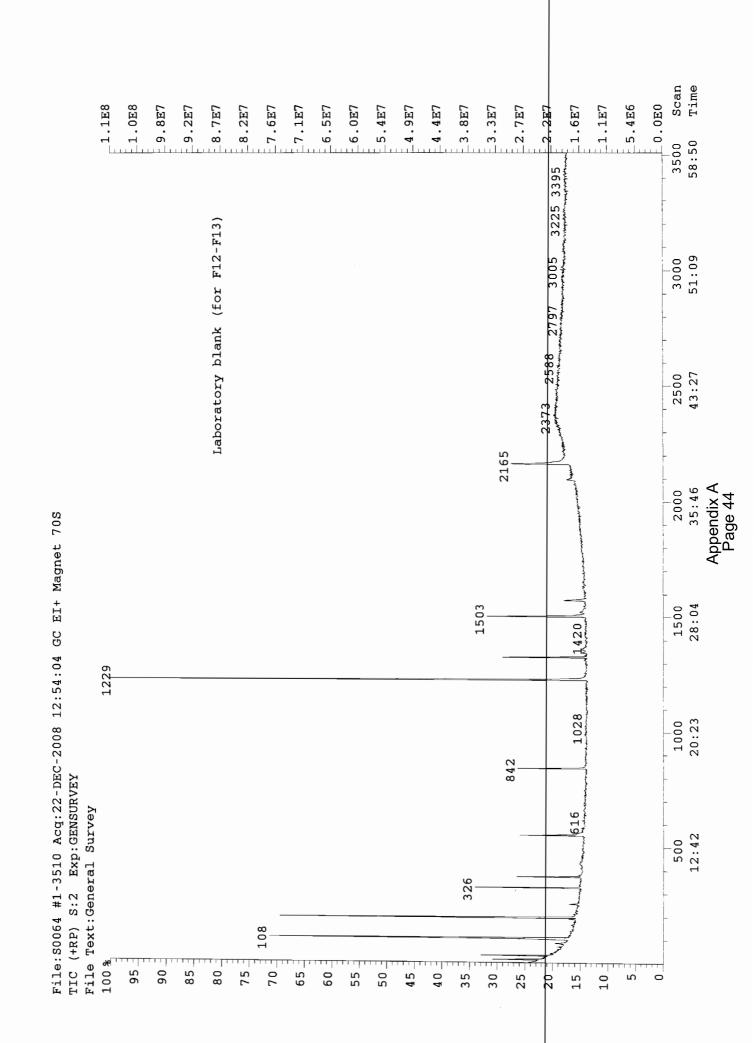
Scan	Compound	Con I **	Con I ** Peak Area	Conc	Internal	Origin of
				(I/bn)	Standard	Peak
0038	de-Benzene	d	1.81	2.0	I.S.	Internal Standard
0116	n-Heptane	d	15.10	16.7	Bz	Contaminant
0205	Toluene	d	11.76	6.5	IJ	Contaminant
0313	Diacetone alcohol	Ы	2.08	1.2	IJ	Contaminant
0335	d _s -Chlorobenzene	d	3.61	2.0	l.S.	Internal Standard
0382	d ₁₀₋ p-Xylene	Ь	2.03	1.0	I.S.	Internal Standard
0563	d _s -Phenol	d	4.26	8.0	I.S.	Internal Standard
0651	2-Ethylhexanol	Ь	0.26	0.1	IJ	Test Material
0843	d _s -Naphthalene	d	2.49	1.0	1.S.	Internal Standard
1241	d ₂₀ -BHT	d	19.36	8.0	1.S.	Internal Standard
1254	BHT	d	0.49	0.2	THB	Test Material
1333	d ₃₄ -Hexadecane	Ь	3.01	1.0	I.S.	Internal Standard
1342	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	L	0.36	0.1	BHT	Contaminant
1350	Unknown 173, 55, 99, 84	n	1.44	9.0	THB	Contaminant
1481	N-Butylbenzenesulphonamide	d	2.35	1.0	LHB	Test Material
1506	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	1/d	8.02	5.0	.S.I	Int. Std. + Contaminant
1516	Tris-(chloropropyl)phosphate isomer	L	0.54	0.2	BHT	Contaminant
1571	Di-isobutyl phthalate	Ь	2.29	6.0	BHT	Contaminant
1634	2-Phenyltridecane	d	1.53	9.0	BHT	Contaminant
1779	Unknown 71, 42, 41, 43	n	0.47	0.2	1H8	Test Material
2068	Unknown 42, 41, 71, 39	n	3.83	1.6	bS	Test Material
2095	Di-(2-ethylhexyl) phthalate	d	1.27	1.4	Sq	Contaminant
2108	Unknown 42, 71, 41, 72	n	0.74	8.0	Sq	Test Material
2166	d ₆₂ -Squalane	Ь	7.01	8.0	I.S.	Internal Standard
2480	Unknown 42, 41, 71, 43	n	1.76	2.0	Sq	Test Material

Internal standards used. Bz=46-Berzene, Cl=45-Chiolobenzene, Xy=410-p-Xykene, Po=45-Phenol, Na=48-Naphthalene, BHT = 420-26-46-busy4-methytyhenol, Na=434-Heradecane, Ph=410-Phenanthrene and Sq=465-Squakene

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.


Reported By: A + James

Date: 10 /2 / 69 Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Appendix Aboratory Manager
Page 43

Authorised By:

Client:

ANALYSIS REPORT

General Survey GCMS Analysis

Date Received Date Analysed: Method Ref: Page: Laboratory blank Bottled water S0064.2 1 Litre n/a Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 16/12/08 P Jackson WRc-NSF N22683 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

16-Dec-08 22-Dec-08 **ORG042**

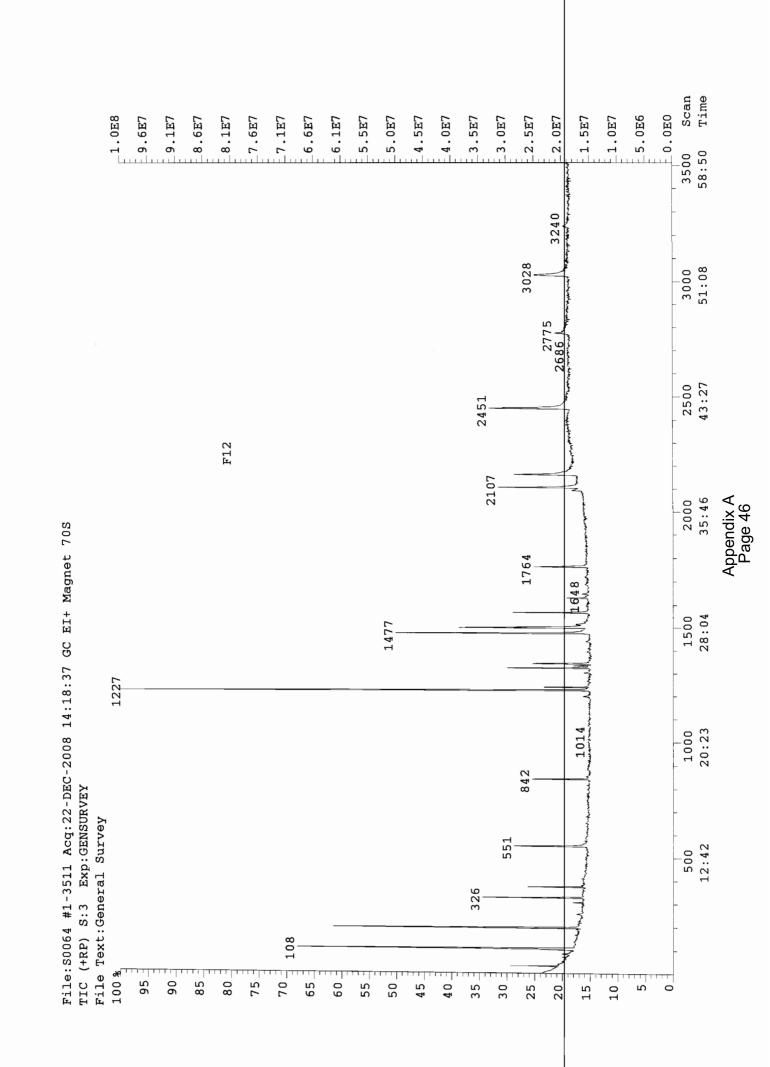
1 of 1

	DIIROGIIIO	- L	COU.L FEAR Area	COLC:	IIICELIA	
				(I/bn)	Standard	Peak
0014	2-Methyl-1,3-dioxolane	T	1.61	1.5	Bz	Contaminant
0031	d _e -Benzene	Ь	2.18	5.0	I.S.	Internal Standard
9800	Unknown 43, 70, 71, 55	n	0.55	9.0	Bz	Contaminant
0108	n-Heptane	Ь	17.69	16.2	Bz	Contaminant
0191	C ₈ H ₁₈ isomer	Ţ	0.31	0.3	Bz	Contaminant
0197	Toluene	ď	13.85	6.3	CI	Contaminant
0255	C ₉ H ₂₀ isomer	Ţ	0.28	0.1	IJ	Contaminant
0326	d ₅ -Chlorobenzene	ď	4.42	2.0	I.S.	Internal Standard
0373	d ₁₀ p-Xylene	Ь	2.64	1.0	LS.	Internal Standard
0552	d _s -Phenol	Ь	5.06	8.0	I.S.	internal Standard
0842	d _s -Naphthalene	ď	3.36	1.0	I.S.	Internal Standard
1229	d ₂₀ -ВНТ	Ы	25.75	8.0	.S.I	Internal Standard
1326	d ₃₄ -Hexadecane	Ь	4.26	1.0	I.S.	Internal Standard
1346	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	⊥	0.98	0.3	BHT	Contaminant
1360	Unknown 173, 55, 99, 84	n	1.53	0.5	BHT	Contaminant
1503	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	L/A	8.76	2.0	I.S.	Int. Std. + Contaminant
1522	Tris-(chloropropyl)phosphate isomer	T	0.59	0.2	BHT	Contaminant
1575	Di-isobutyl phthalate	Ь	2.11	0.7	BHT	Contaminant
2097	Di-(2-ethylhexyi) phthalate	d	1.07	1.1	Sq	Contaminant
2165	d ₆₂ -Squalane	_ d	7.77	8.0	I.S.	Internal Standard

Internal standards used: Bz=d6-Benzene, Cl=d5-Chlorobenzane, Xy=d10-p-Xylene, Po=d5-Pheno), Na=d8-Naphthalene, BHT = d20-2,6-d8-buty4-4-methyleheno), Hx=d34-Hexadecane. Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. amples were analysed as received unless otherwise stated


Reported By: * A. Taune

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Laboratory Manager **Authorised By:**

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: II/2/0?

General Survey GCMS Analysis

Date Received Date Analysed: Method Ref: Page: Groundwater S0064.3 S0064.2 1 Litre Sample Code:
Sample Type:
Data System Code: Associated Blank: Sample Volume: Samples Received 16/12/08 P Jackson WRc-NSF N22683 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042 16-Dec-08 22-Dec-08

1 of 2

Scan	Compound	Con.L**	Con.L** Peak Area	Conc. (ug/l)	Internal Standard	Origin of Peak
0031	d ₆ -Benzene	Ь	1.73	2.0	.S.I	Internal Standard
9800	C ₈ H ₁₈ isomer	1	0.38	6.4	Bz	Contaminant
0108	n-Heptane	Ь	15.22	17.6	Bz	Contaminant
0197	Toluene	Ь	13.77	7.0	IJ	Contaminant
0255	C ₉ H ₂₀ isomer	T	0.26	0.1	CI	Contaminant
0305	Diacetone alcohol	Ь	0.39	0.2	I)	Contaminant
0326	d ₅ -Chlorobenzene	Р	3.95	2.0	I.S.	Internal Standard
0373	d _{10.} p-Xylene	Ь	2.25	1.0	·S·I	Internal Standard
0551	d ₅ -Phenol	Ь	4.68	8.0	·S·I	Internal Standard
0842	d ₈ -Naphthalene	Ь	2.79	1.0	·S·I	Internal Standard
1200	2,6-Di-t-butyl-4-methylene-2,5-cyclohexadien-1one	Τ	0.33	0.1	BHT	Test Material
1227	d ₂₀ -BHT	Ь	23.75	8.0	I.S.	Internal Standard
1241	ВНТ	Ь	1.90	9.0	BHT	Test Material
1303	Diethyf phthalate	Ь	0.37	0.1	BHT	Contaminant
1324	d ₃₄ -Hexadecane	Ь	3.71	1.0	S'I	Internal Standard
1334	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	_	0.62	0.2	BHT	Contaminant
1343	Unknown 173, 55, 99, 84	n	3.39	1.1	BHT	Contaminant
1477	N-Butylbenzenesulphonamide	ď	13.34	4.5	BHT	Test Material
1501	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	Ρ/T	11.10	2.0	l.S.	Int. Std. + Contaminant
1514	Tris-(chloropropyl)phosphate isomer	⊢	0.59	0.2	BHT	Contaminant
1568	Di-isobutyl phthalate	Д	3.66	1.2	BHT	Contaminant
1631	2-Phenyltridecane	⊢	1.06	0.4	BHT	Contaminant
2094	Di-(2-ethylhexyl) phthalate	Ь	1.16	0.9	Sq	Contaminant
2107	Unknown 71, 42, 43, 55 (M ⁺ 360)	n	7.40	5.6	Sq	Test Material
2164	d ₆₂ -Squalane	۵.	10.61	8.0	1.3.	Internal Standard

Internal standards used Bz=dG-Benzene, Cl=d5-Chlotobenzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-dif-bury/d-methylphenol, Hx=d3-4-Hexadecane, Ph=d10-Phenanthrene and Sq=d82-Squalane

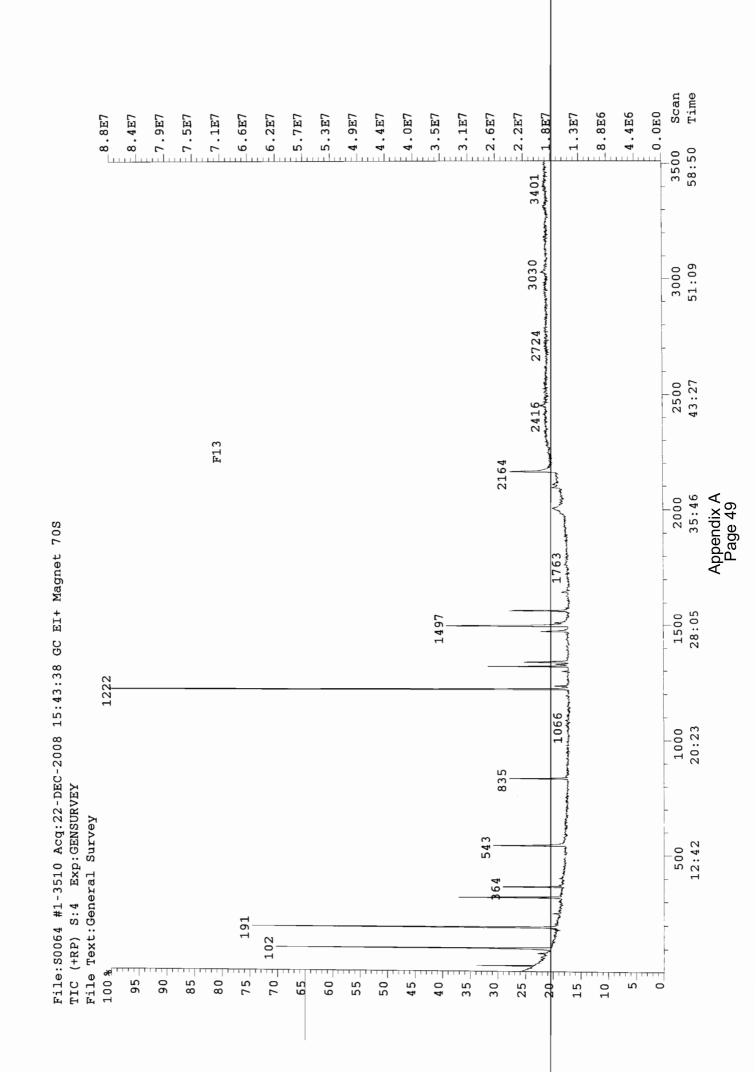
General Survey GCMS Analysis

Groundwater S0064.3 S0064.2 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 16/12/08 P Jackson WRc-NSF N22683 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

16-Dec-08 22-Dec-08 **ORG042** 2 of 2 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/Bn)	Standard	Peak
2451	Unknown 42, 71, 41, 72 (M* 432)	n	10.85	8.2	bS	Test Material
2775	Unknown 57, 45, 101, 155	n	3.32	2.5	bS	Test Material
3028	Unknown 42, 71, 41, 39 (M* 504)	n	7.82	5.9	bS	Test Material

Internal standards used: Bz=d6-Benzene, Cl=d5-Chforobenzene, Xy=d10-p-Xyfene, Po=d5-Phenol, Na=d8-Maphthalene, BHT = d20-2,6-dit-buty4-methyphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane


**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: A. A. Tauner

Date: (((2)0) Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule. Authorised By:

Laboratory Manager

General Survey GCMS Analysis

F13 Groundwater S0064.4 S0064.2 1 Litre Sample Type: Data System Code: Associated Blank: Sample Volume: Sample Code: Samples Received 16/12/08 P Jackson WRc-NSF N22683 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042	16-Dec-08	22-Dec-08	1 of 1
Method Ref:	Date Received	Date Analysed:	Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ng/l)	Standard	Peak
0024	d ₆ -Benzene	Ь	1.49	2.0	I.S.	Internal Standard
0800	C ₈ H ₁₈ isomer	T	0.34	0.5	Bz	Contaminant
0102	n-Heptane	Ь	11.76	15.8	Bz	Contaminant
0191	Toluene	d	11.20	5.9	IJ	Contaminant
0249	C ₉ H ₂₀ isomer	T	0.33	0.2	IJ	Contaminant
0318	d ₅ -Chlorobenzene	Ь	3.78	2.0	I.S.	Internal Standard
0364	d _{10.} p-Xylene	Ь	2.37	1.0	I.S.	Internal Standard
0543	d _s -Phenol	d	4.13	8.0	I.S.	Internal Standard
0835	d _s -Naphthalene	d	2.48	1.0	I.S.	Internal Standard
1222	d ₂₀ -BHT	Ь	21.42	8.0	LS.	Internal Standard
1235	BHT	Ь	0.52	0.2	BHT	Test Material
1298	Diethyl phthalate	Ь	0.32	0.1	BHT	Contaminant
1319	d ₃₄ -Hexadecane	Ь	3.28	1.0	l.S.	Internal Standard
1329	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	1	0.58	0.2	BHT	Contaminant
1338	Unknown 173, 55, 99, 84	n	2.62	1.0	BHT	Contaminant
1472	N-Butylbenzenesulphonamide	Ь	1.88	0.7	BHT	Test Material
1497	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	10.44	2.0	I.S.	Int. Std. + Contaminant
1510	Tris-(chloropropyl)phosphate isomer	T	0.63	0.2	BHT	Contaminant
1565	Di-isobutyl phthalate	Ь	2.91	1.1	BHT	Contaminant

Internal Standard

80.0

Δ

Di-(2-ethylhexyl) phthalate

d₆₂-Squalane

Unknown 42, 71, 41, 72

2005 2094 2164

Test Material

Sq ß

3.44 7.01

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. A. Januar

J. Dunning Laboratory Manager Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Date: (((2 0 9

Scan Time 5.2E6 1.0E8 1.0E7 030.0E 9.8E7 8.3E7 7.7E7 7.2E7 6.7E7 6.2E7 5.7E7 5.2E7 4.6E7 4.1E7 3.6E7 3.1E7 2.6E7 2.1E7 1.5E7 9.3E7 8.8E7 3500 58:48 2857 3051 3242 Laboratory blank (for F14-F15) 3000 2626 2500 43:26 2427 2143 Appendix A Page 51 2000 35:45 File:S0066 #1-3513 Acq: 20-JAN-2009 19:32:28 GC EI+ Magnet 70S 1695 1500 28:04 1480 1222 1000 20:23 852 TIC (+RP) S:2 Exp:GENSURVEY 759 File Text:General Survey 556 500 12:42 874 196 107 100% 30 25 0 75 95 90 85 80 70 65 09 55 50 45 40 35 10_ 15 Ŋ

General Survey GCMS Analysis

Laboratory blank Bottled water S0066.2 1 Litre n/a Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 30/12/08 P Jackson WRc-NSF N22688 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

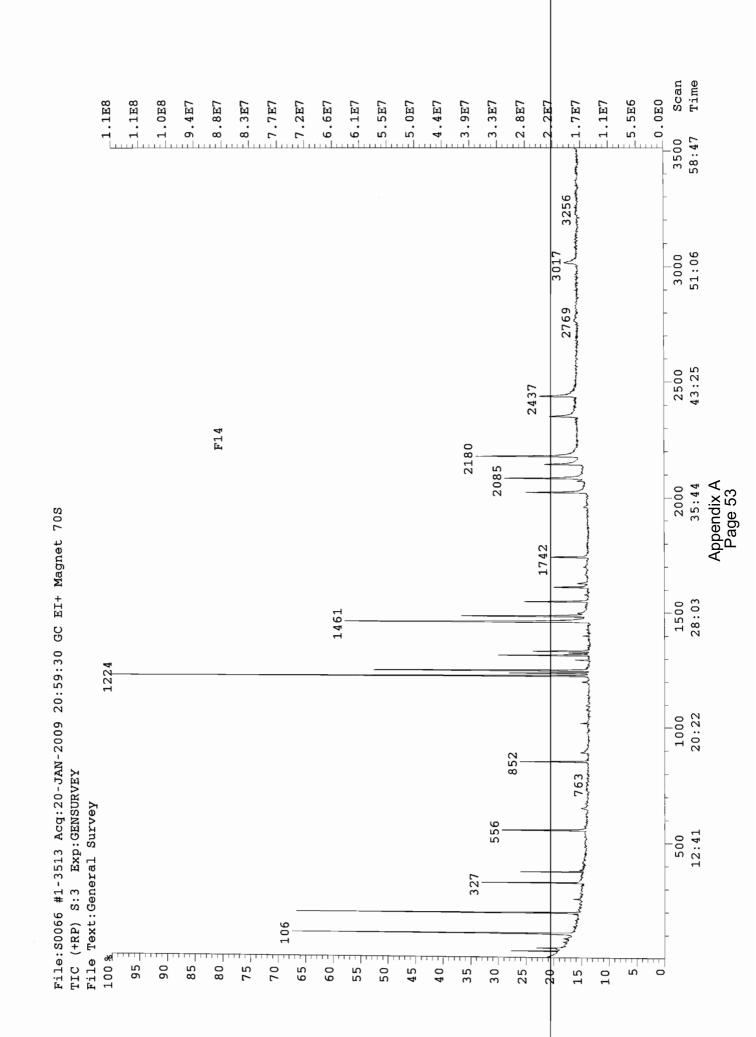
30-Dec-08 20-Jan-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/bn)	Standard	Peak
0012	2-Methyl-1,3-dioxolane	T	1.16	1.1	Bz	Contaminant
0028	d _e -Benzene	d	2.12	2.0	·S·I	Internal Standard
0037	Carbon tetrachloride	d	0.14	0.1	Bz	Contaminant
0042	Cyclohexane	Ь	1.39	1.3	Bz	Contaminant
0107	n-Heptane	Ь	12.87	12.1	Bz	Contaminant
0196	Toluene	Ь	12.52	6.1	IJ	Contaminant
0327	d ₅ -Chlorobenzene	Ь	4.09	2.0	S'I	Internal Standard
0374	d ₁₀₋ p-Xylene	Ь	2.35	1.0	I.S.	Internal Standard
0382	Xylene isomer	Ь	0.36	0.2	IJ	Contaminant
0556	d ₅ -Phenol	Ь	5.25	8.0	I.S.	Internal Standard
0852	d _s -Naphthalene	Ь	3.21	1.0	I.S.	Internal Standard
1222	d ₂₀ -BHT	Ь	21.28	8.0	I.S.	Internal Standard
1312	d ₃₄ -Hexadecane	Ь	3.33	1.0	I.S.	Internal Standard
1323	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	⊥	0.58	0.2	BHT	Contaminant
1334	Unknown 173, 55, 99, 84	n	1.28	0.5	BHT	Contaminant
1480	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	8.10	2.0	I.S.	Int. Std. + Contaminant
1546	Di-isobutyl phthalate	Ь	3.11	1.2	BHT	Contaminant
1607	2-Phenyltridecane	Ţ	0.36	0.1	BHT	Contaminant
1625	Di-n-butyl phthalate	Ь	1.14	9.0	BHT	Contaminant
2097	Di-(2-ethylhexyl) phthalate	Ь	1.07	1.1	Sq	Contaminant
2165	d ₆₂ -Squalane	Ь	7.77	8.0	I.S.	Internal Standard
	dez oducación	1	1.7.1	0.0	-	1

Internal standards used: B=d5-Chlorobenzene, Xp=d10-p-Xylene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-d6-buty4-4methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.


Reported By: H. A. Taune

fests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Laboratory Manager Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: (6/2/69

General Survey GCMS Analysis

Mothod Ref. F14 Groundwater S0066.3 S0066.2 1 Litre Sample Code:
Sample Type:
Data System Code:
Associated Blank:
Sample Volume: P Jackson WRc-NSF Samples Received 30/12/08 N22688 14907-0 WRc-NSF Reference: WRc-NSF Contract No: Client Reference: Contact Name: Client:

ORG042	30-Dec-08	20-Jan-09	1 of 2
Method Ref:	Date Received	Date Analysed:	Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/bn)	Standard	Peak
0028	de-Benzene	d	1.91	2.0	I.S.	Internal Standard
0042	Cyclohexane	d	1.37	1.4	Bz	Contaminant
0106	n-Heptane	d	13.18	13.8	Bz	Contaminant
0196	Toluene	d	13.17	2.5	IJ	Contaminant
0327	d _s -Chlorobenzene	d	4.63	2.0	I.S.	Internal Standard
0374	d ₁₀₋ p-Xylene	Ь	2.52	1.0	S.I	Internal Standard
0556	d _s -Phenol	d	5.41	8.0	I.S.	Internal Standard
0651	2-Ethylhexanol	Ь	0.61	0.3	IJ	Test Material
0852	d _s -Naphthalene	d	3.02	1.0	1.S.	Internal Standard
0891	2-Phenoxyethanol	Ь	0.39	0.2	IJ	Test Material
1018	Unknown 55, 84, 112, 142	n	0.49	0.2	IJ	Test Material
1198	2,6-Di-t-butyl-4-methylene-2,5-cyclohexadien-1one	Ţ	0.34	0.1	BHT	Test Material
1224		Ь	24.54	8.0	'S'I	Internal Standard
1237	BHT	d	3.30	1.1	BHT	Test Material
1248	1,6-Dioxacyclododecane-7,12-dione	1	12.71	4.1	BHT	Test Material
1295	Diethyl phthalate	d	0.71	0.2	BHT	Contaminant
1315	d ₃₄ -Hexadecane	d	4.2	1.0	S:I	Internal Standard
1324	T T	Ţ	0.83	0.3	THB	Contaminant
1333	Unknown 173, 55, 99, 84	Π	3.56	1.2	BHT	Contaminant
1461		d	24.36	6.7	THB	Test Material
1487		P/T	9.94	2.0	I.S.	Int. Std. + Contaminant
1498	Tris-(chloropropyl)phosphate isomer	1	0.58	0.2	BHT	Contaminant
1550		d	3.68	1.2	BHT	Contaminant
1611	2-Phenyitridecane	T	2.53	0.8	BHT	Contaminant
1628	Di-n-butyl phthalate	ď	0.71	0.2	1HB	Contaminant
1742		n	3.04	1.0	BHT	Test Material
2025		n	6.65	2.2	bS	Test Material
2073	-ethylhexyl)	Ь	0.51	0.7	bS	Contaminant

Internal standards used: BZ=06-Benzene, Cl=05-Chlorobenzene, Xy=d10-p-Xylene, Po=05-Phenol, Na=d8-Naphthanene, BHT = a20-28-d8-butyl-4-methylphenol, Hx=d34-Hexadecane. Ph=d10-Phenonthrone and Sq=062-Squalane

General Survey GCMS Analysis

Groundwater S0066.3 S0066.2 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 30/12/08 P Jackson WRc-NSF 14907-0 N22688 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042 30-Dec-08 20-Jan-09

2 of 2

Date Received Date Analysed: Page :

Method Ref:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/Bn)	Standard	Peak
2085	Unknown 42, 71, 41, 55 (M* 360)	n	7.12	9.7	Sq	Test Material
2145	d ₆₂ -Squalane	Ь	2:30	8.0	l.S.	Internal Standard
2180	Unknown 55, 173, 99, 42 [M* 372]	n	12.26	16.6	Sq	Test Material
2351	Unknown 55, 42, 41, 54 [M* 400}	n	4.80	6.5	Sq	Test Material
2437	Unknown 42, 71, 41, 72 (M* 432)	n	90.7	9.6	Sq	Test Material
3017	Unknown 42, 71, 41, 39 (M* 504)	n	3.55	4.8	Sq	Test Material

Internal standards used B2=86-Berzane, Cl=d5-Chloroberzene, Xj=d10-Xykene, Po=d5-Phenol, Na=88-Asphthalene, BHT = d20-2,6-dis-busyk-methyphenol, Ho-d34-Heradecane, Ph=d10-Phenathrene and Sq=d32-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

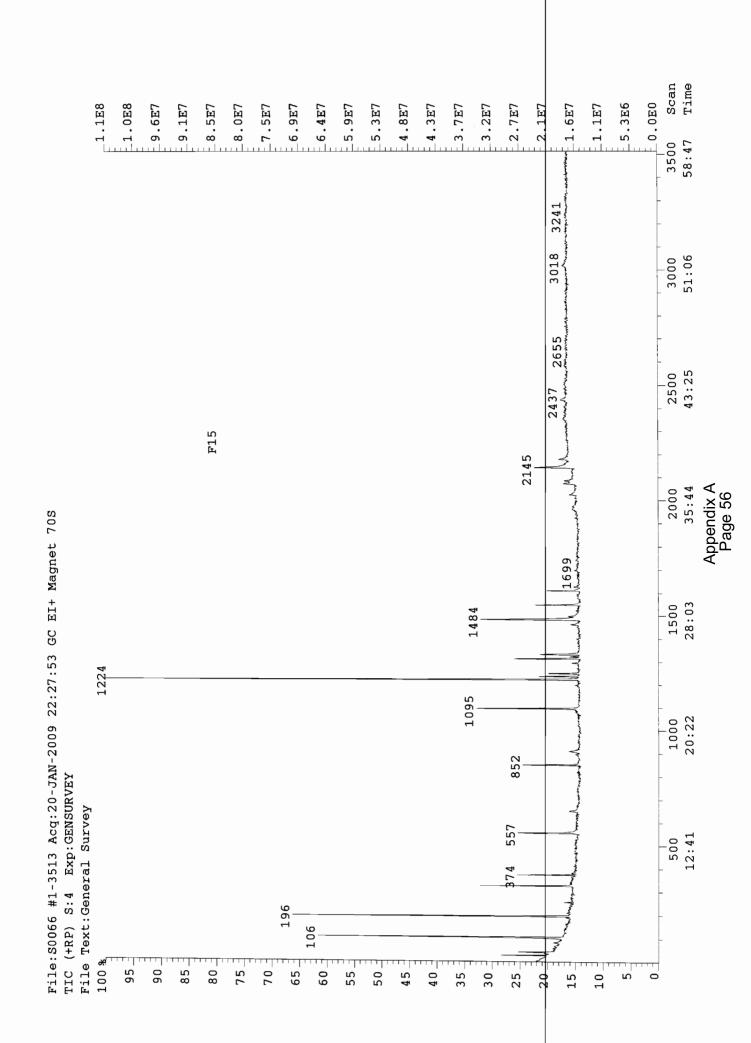
Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: 4 . A. James

Authorised By: J. Dunning


Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Date: (8/2/09

Laboratory Manager

General Survey GCMS Analysis

Groundwater S0066.4 S0066.2 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 30/12/08 N22688 P Jackson WRc-NSF 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client

ORG042 30-Dec-08 20-Jan-09 1 of 1 Date Received Date Analysed: Page : Method Ref:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/gn)	Standard	Peak
0027	d ₆ -Benzene	Ь	1.63	2.0	LS.	Internal Standard
0041	C ₈ H ₁₈ isomer	T	1.58	1.9	Bz	Contaminant
	n-Heptane	Ь	10.68	13.1	Bz	Contaminant
	Toluene	Ь	12.76	6.1	IJ	Contaminant
	d ₅ -Chlorobenzene	d	4.16	2.0	I.S.	Internal Standard
	d ₁₀₋ p-Xylene	Ь	2.58	1.0	I.S.	Internal Standard
	d ₅ -Phenol	Ь	4.34	8.0	l.S.	Internal Standard
0652	2-Ethylhexanol	Ь	1.44	0.7	l)	Test Material
0852	d ₈ -Naphthalene	Ь	3.12	1.0	LS.	Internal Standard
	2-Phenoxyethanol	Ь	1.33	9.0	IJ	Test Material
1095	Unknown 43, 58, 41, 27	n	2.38	2.0	BHT	Test Material
	d ₂₀ -BHT	Ь	21.16	8.0	I.S.	Internal Standard
	ВНТ	Ь	1.48	9.0	BHT	Test Material
1249	1,6-Dioxacyclododecane-7,12-dione	T	1.66	9.0	BHT	Test Material
	Diethyl phthalate	Ь	98.0	0.4	BHT	Contaminant
1314	d ₃₄ -Hexadecane	Ь	3.30	3.3	LS.	Internal Standard
1324	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	⊥	0.48	0.5	BHT	Contaminant
1333	Unknown 173, 55, 99, 84	n	3.37	3.4	BHT	Contaminant
1462	N-Butylbenzenesulphonamide	Ь	0.99	1.0	BHT	Test Material
1484	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	10.48	2.0	I.S.	Int. Std. + Contaminant
1497	Tris-(chloropropyl)phosphate isomer	1	0.46	0.2	BHT	Contaminant
	Di-isobutyl phthalate	Ь	2.55	1.0	BHT	Contaminant
1611	2-Phenyltridecane	T	2.16	8.0	bS	Test Material
1628	Di-n-butyl phthalate	Ь	92.0	6.0	bS	Test Material
2026	Unknown 55, 99, 173, 113 IM* 3441	h	08:0	1:1		Test Material
	Di-(2-ethylhexyl) phthalate	ď	1.72	2.1	П	Contaminant
2086	Unknown 71, 42, 41, 73	n	1.13	1.4	Sq	Test Material
2145	d ₆₂ -Squalane	Ь	6.58	8.0	.S.I	Internal Standard

internal standards used. 82–96 Benzene, CladS-Chiotobenzene, Xy-d10-p-X/viene, PoadS-Phenol, Na-d8-Mabthbane, BHT = 420-26-dis butyl-4-nethyphenol, Ha-d34-Hecadecane, Ph-d10-Phenathrene and Sq-662-Squadene

General Survey GCMS Analysis

Groundwater S0066.4 S0066.2 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 30/12/08 P Jackson WRc-NSF N22688 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042	30-Dec-08	20-Jan-09	1 of 1
Method Ref:	Date Received	Date Analysed:	Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc. (ua/l)	Internal Standard	Origin of Peak
2180	Unknown 55, 173, 99, 53 [M ⁺ 372]	n	1.23	1.5	Sq	Test Material
2437	Unknown 42, 71, 41, 55	n	0.83	1.0	Sq	Test Material

Internal standards used. Bzz.dG-Benzene, CledG-Chlorobenzene, Xyzd10-p-Xylene, Poz-dG-Phanol, Nazd6-Naphthaene, BHT = d20-2,6-df-buyl-4-methylphenol, Hz-d34-Heuadecane. Phz-d10-Phenonthrene and Sqz-d62-Squalane

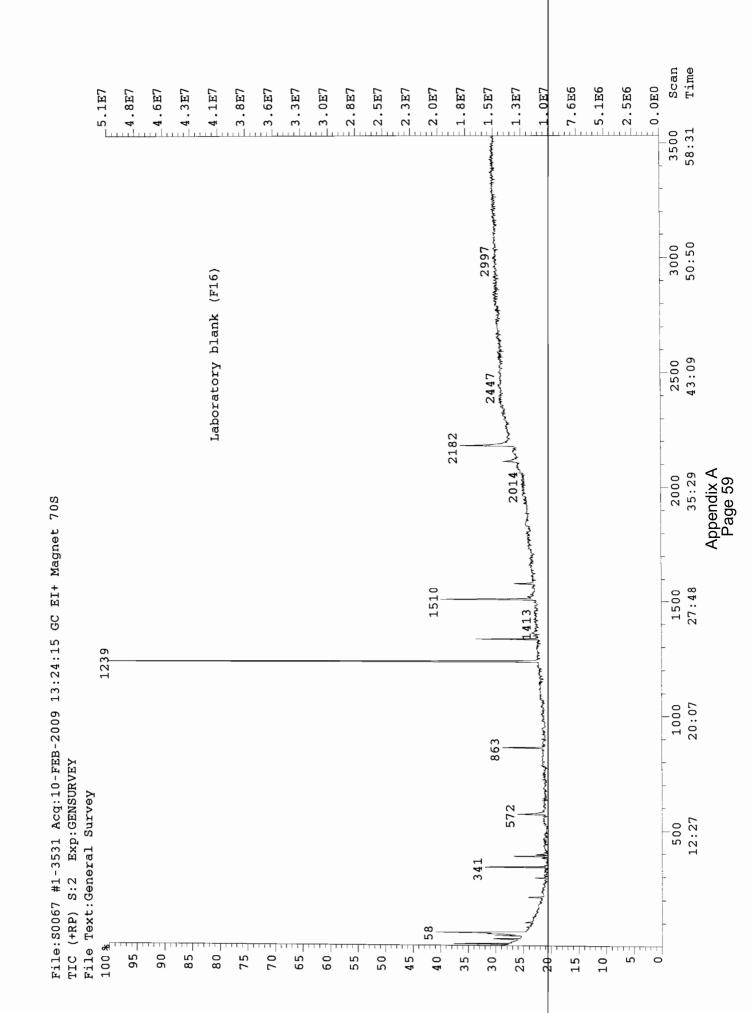
**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Samples were analysed as received unless otherwise stated.

Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H.A. Term

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. Other Derwing


Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Authorised By:

J. Dunning

Date: 18/2/08

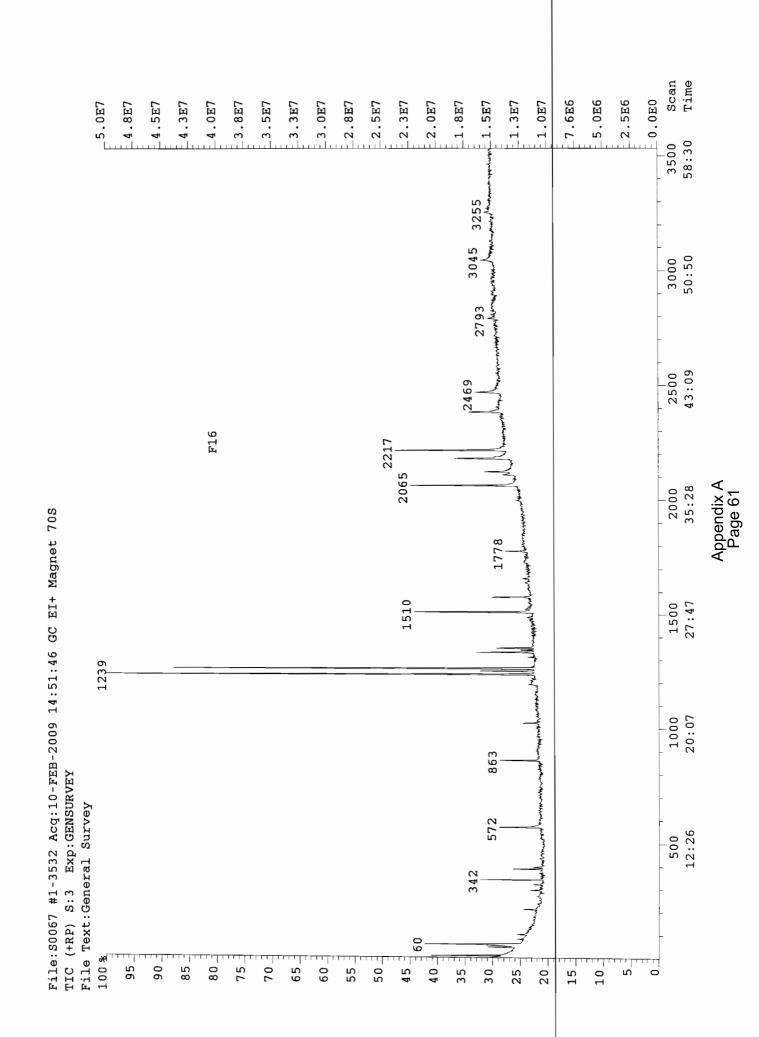
Laboratory Manager

General Survey GCMS Analysis

Laboratory blank Bottled water 2.00067.2 1 Litre n/a Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 27/01/09 N22700 P Jackson WRc-NSF 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client

ORG042 27-Jan-09 10-Feb-09 1 of 1 Method Ref: Date Received Date Analysed: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/bn)	Standard	Peak
2000	Acetone	Ь	0.94	3.6	Bz	Contaminant
0029	2-Methyl-1,3-dioxolane	T	0.57	2.2	Bz	Contaminant
0045	d ₆ -Benzene	Ь	0.52	2.0	I.S.	Internal Standard
0053	Carbon tetrachloride	Ь	3.48	7 61	-a	Contaminant
0058	Cyclohexane	Ь	0.40	t.	70	Contaminant
0102	1,4-Dioxane	Ь	0.22	8.0	Bz	Contaminant
0211	Toluene	Ь	0.43	9.0	IJ	Contaminant
0295	Butyl acetate	Ь	0.28	6.0	IJ	Contaminant
0341	d _s -Chlorobenzene	Ь	1.37	2.0	LS.	Internal Standard
0381	Xylene isomer	Ь	0.20	6.0	IJ	Contaminant
0389	d ₁₀ .p-Xylene	Ь	0.83	1.0	I.S.	Internal Standard
0397	Xylene isomer	Ь	0.44	9.0	ľ	Contaminant
0572	d _s -Phenol	Ь	1.70	8.0	.S.I	Internal Standard
0863	d _s -Naphthalene	Ь	96:0	1.0	I.S.	Internal Standard
1239	d ₂₀ -BHT	Ь	10.16	8.0	.S.I	Internal Standard
1335	d ₃₄ -Hexadecane	Ь	1.42	1.0	I.S.	Internal Standard
1510	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	Ρ/T	8.10	2.0	l.S.	Int. Std. + Contaminant
1521	Tris-(chloropropyl)phosphate isomer	Τ	0.14	0.1	BHT	Contaminant
1581	Di-isobutyl phthalate	Ь	3.11	2.4	BHT	Contaminant
2113	Di-(2-ethylhexyl) phthalate	Ь	1.07	1.1	bS	Contaminant
2182	d ₆₂ -Squalane	Ь	7.77	8.0	.S.I	Internal Standard


Internal standards usert BZ=06-Benzene, Cl=65-Chlorobenzene, Xy=d10-p-Xylene, Po=05-Phenol, Na=d8-Haphthalene, BHT = d20-2,6-df-buy4-4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: 4. 4. Tames

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. She During Tests marked \$; Not included in the WRc-NSF UKAS Accreditation Schedule J. Dunning Laboratory Manager Authorised By:

General Survey GCMS Analysis

 Contact Name:
 P Jackson
 Sample Code:
 F14

 Client:
 WRc-NSF
 Sample Type:
 Groundwater

 Client Reference:
 Samples Received 27/01/09
 Data System Code:
 S0067.3

 WRc-NSF Reference:
 N22700
 Associated Blank:
 S0067.2

 WRc-NSF Contract No:
 14907-0
 Sample Volume:
 1 Litre

Method Ref:

Date Received 27-Jan-09
Date Analysed: 10-Feb-09
Page: 1 of 2

Compound	0	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ng/l)	Standard	Peak
Acetone		Ь	1.30	5.2	Bz	Contaminant
de-Benzene		Ь	0.50	2.0	I.S.	Internal Standard
Carbon tetrachloride		Ь	3.26	13.0	B,	Contaminant
Cyclohexane		Ь	0.50	13.0	70	Contaminant
1,4-Dioxane		Ь	0.15	9.0	Bz	Contaminant
Toluene		Ь	0.26	9.4	IJ	Contaminant
Butyl acetate		Ь	0.28	0.4	IJ	Contaminant
Diacetone alcohol		Ь	0.18	0.2	IJ	Contaminant
d ₅ -Chlorobenzene		Ь	1.45	2.0	1.S.	Internal Standard
d ₁₀₋ p-Xylene		Ь	0.71	1.0	I.S.	Internal Standard
Xylene isomer		Ь	0.24	0.3	Ö	Contaminant
d ₆ -Phenol		Ь	1.59	8.0	I.S.	Internal Standard
d ₈ -Naphthalene		Ь	1.02	1.0	I.S.	Internal Standard
Unknown 55, 84, 112, 41		n	0.30	0.2	BHT	Test Material
d ₂₀ -BHT		Ь	10.07	8.0	.S.I	Internal Standard
ВНТ		Ь	1.04	0.8	BHT	Test Material
1,6-Dioxacyclododecane-7,12-dione		T	9.26	7.4	BHT	Test Material
Diethyl phthalate		Ь	0.19	0.2	BHT	Contaminant
d ₃₄ -Hexadecane		Ь	1.35	1.0	1.S.	Internal Standard
2,4,4-Trimethylpentane-1,3-diol di-isobutyrate		⊥	0.28	0.2	BHT	Contaminant
Unknown 173, 55, 99, 84		n	1.04	0.8	BHT	Contaminant
d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	somer	Ρ/T	4.10	2.0	I.S.	Int. Std. + Contaminant
Tris-(chloropropyl)phosphate isomer		_	0.12	0.1	BHT	Contaminant
Di-isobutyl phthalate		Ь	0.84	0.7	BHT	Contaminant
Unknown 71, 42, 41, 55		n	0.65	0.5	148	Test Material
Unknown 55, 173, 99, 113 [M ⁺ 344]		n	3.49	2.8	bS	Test Material
Di-(2-ethylhexyl) phthalate		Ь	09.0	1.3	Sq	Contaminant
Unknown 71, 42, 41, 55 (M ⁺ 360)		n	1.28	2.8	Sq	Test Material
d ₆₂ -Squalane		Ь	3.67	8.0	.S.I	Internal Standard

Internal standards used: Bz=de-Benzene, Cl=d5-Chlorobenzene, Xy=d10-p-Xylene, Po=d5-Pheno! Na=d8-Asphthalene, BHT = d20-2,6-dit-buty-d+methypheno!, Hx=d3-4-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squakane

General Survey GCMS Analysis

F14 Groundwater S0067.3 S0067.2 1 Litre Sample Code: Sample Type: Data System Code: Associated Blank: Sample Volume: Samples Received 27/01/09 P Jackson WRc-NSF N22700 14907-0 WRC-NSF Reference: WRC-NSF Contract No: Client Reference: Contact Name: Client:

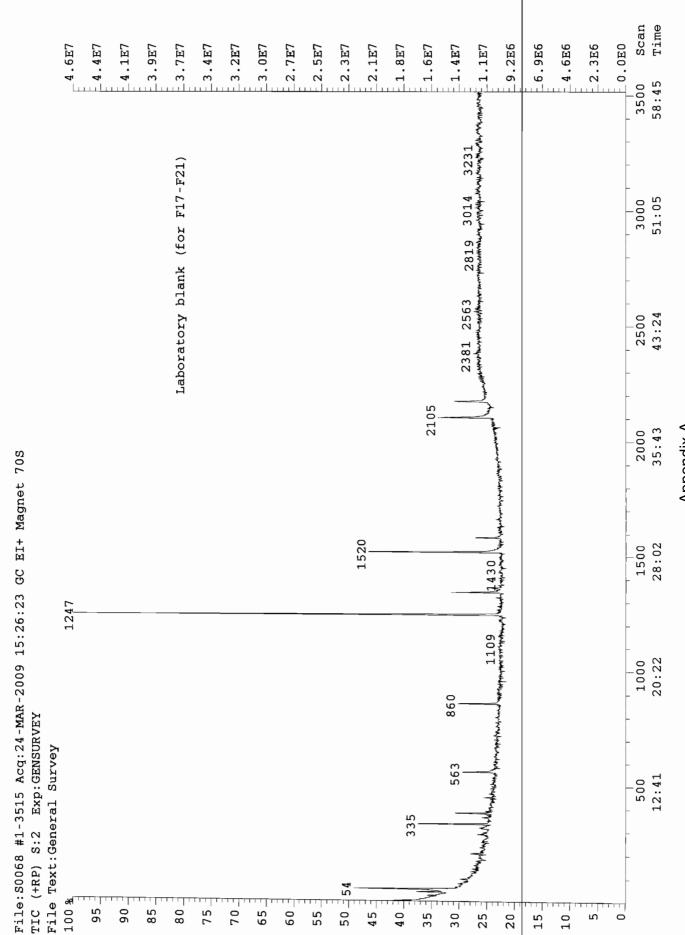
ORG042 27-Jan-09 10-Feb-09 2 of 2 Date Received Date Analysed: Page : Method Ref:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/bn)	Standard	Peak
2217	Unknown 55, 99, 173, 41 [M ⁺ 372]	n	4.58	10.0	Sq	Test Material
2384	Unknown 55, 42, 41, 54 [M ⁺ 400}	n	1.82	4.0	Sq	Test Material
2469	Unknown 42, 71, 41, 72 (M* 432)	n	1.76	3.8	Sq	Test Material
3045	Unknown 42, 71, 41, 39 (M ⁺ 504)	n	0.87	1.9	Sq	Test Material

internal standards used. Bz=46-Berzene, Chefs-Chiorobenzene, Xy=d10-p-Xylene, Po=45-Phenol, Na=48-Naphthalene, BHT = 420-26-46-buly4-methyphenol, Hz=434-Heradecane Ph=410-Phenathrene and Sq=452-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U≂Unknown

Samples were analysed as received unless otherwise stated.


Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. A. Haurs

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Laboratory Manager Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Appendix A Page 64

General Survey GCMS Analysis

Laboratory blank Bottled water S0068.2 1 Litre n/a Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 25/02/09 WRc-NSF P Jackson N22713 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

25-Feb-09 24-Mar-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/gn)	Standard	Peak
0040	d ₆ -Benzene	Ь	0.61	2.0	I.S.	Internal Standard
0054	Cyclohexane	Ы	2.52	8.26	Bz	Contaminant
0335	d ₅ -Chlorobenzene	Ь	1.67	2.0	I.S.	Internal Standard
0389	d ₁₀₋ p-Xylene	Ь	0.74	1.0	I.S.	Internal Standard
0563	d ₅ -Phenol	Ь	1.25	8.0	I.S.	Internal Standard
0860	d _s -Naphthalene	Ь	1.04	1.0	l.S.	Internal Standard
1247	d ₂₀ -BHT	Ь	9.72	8.0	l.S.	Internal Standard
1344	d ₃₄ -Hexadecane	Ь	1.30	1.0	I.S.	Internal Standard
1363	Unknown 173, 55, 99, 84	ñ	0.25	0.2	BHT	Contaminant
1520	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	4.60	2.0	I.S.	Int. Std. + Contaminant
1584	Di-isobutyl phthalate	Ь	0.73	9.0	BHT	Contaminant
2105	Di-(2-ethylhexyl) phthalate	Ь	2.53	14.9	Sq	Contaminant
2175	d ₆₂ -Squalane	Ь	1.36	8.0	l.S.	Internal Standard

Internal standards used: B2-46-Benzene, CladS-Chlorobenzene, Xy-4010-y/yens, Po-45-Phenol, Na-48-Maththalene, BHT = 420-26-48 buty4-methyphenol, Hzr434-Hazadecune, Ph=410-Phenanthrane and Sqr462-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: A. A. James

Jan Dung J. Dunning Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Laboratory Manager

Appendix A Page 66

General Survey GCMS Analysis

Groundwater S0068.3 S0068.2 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 25/02/09 P Jackson WRc-NSF 14907-0 N22713 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042 25-Feb-09 24-Mar-09 Method Ref: Date Received Date Analysed:

1 of 1 Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of	
				(l/bn)	Standard	Peak	
0040	d ₆ -Benzene	Ь	0.60	2.0	l.S.	Internal Standard	
0054	Cyclohexane	Ь	2.66	8.87	Bz	Contaminant	
0206	Toluene	Ь	0.41	6'0	IO	Contaminant	
0289	Butyl acetate	Ь	0.36	8.0	i)	Contaminant	
0317	Diacetone alcohol	Ь	0.80	1.7	IJ	Contaminant	
0335	d ₅ -Chlorobenzene	Ь	0.92	2.0	I.S.	Internal Standard	
0383	d ₁₀₋ p-Xylene	Ь	1.02	1.0	I.S.	Internal Standard	
0564	d ₅ -Phenol	Ь	1.83	8.0	l.S.	Internal Standard	
0861	d _s -Naphthalene	Ь	1.25	1.0	1.S.	Internal Standard	
1247	d ₂₀ -BHT	P	11.48	8.0	I.S.	Internal Standard	
1261	BHT	Ь	1.21	8.0	BHT	Test Material	
1273	1,6-Dioxacyclododecane-7,12-dione	T	4.54	3.2	BHT	Test Material	
1344	d ₃₄ -Hexadecane	Ь	1.49	1.0	I.S.	Internal Standard	
1354	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	T	0.28	0.2	BHT	Contaminant	
1361	Unknown 173, 55, 99, 84	n	0.98	0.7	BHT	Contaminant	
1519	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	5.13	2.0	I.S.	Int. Std. + Contaminant	
	Tris-(chloropropyl)phosphate isomer	T	0.27	0.2	BHT	Contaminant	
1584	Di-isobutyl phthalate	Ь	0.97	0.7	BHT	Contaminant	
1776	Unknown 42, 71, 41, 43	n	0.80	9.0	BHT	Test Material	
2105	Di-(2-ethylhexyl) phthalate	Ь	1.85	7.7	Sq	Contaminant	
2117	Unknown 71, 42, 41, 55 (M* 360)	n	0.87	3.6	Sq	Test Material	
2174	d ₆₂ -Squalane	Ь	1.93	8.0	I.S.	Internal Standard	
2467	Unknown 42, 71, 41, 72 (M* 432)	n	1.14	4.7	Sq	Test Material	

1876 State S

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: 4. A. Isun

J. Dunning Laboratory Manager **Authorised By:**

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 8/4/09

Appendix A Page 68

General Survey GCMS Analysis

 Contact Name:
 P Jackson
 Sample Code:

 Client:
 VRc-NSF
 Sample Type:

 Client Reference:
 Samples Received 25/02/09
 Data System Code:

 WRc-NSF Reference:
 N22713
 Associated Blank:

 WRc-NSF Contract No:
 14907-0
 Sample Volume:

Method Ref: ORG042
Date Received 25-Feb-09
Date Analysed: 24-Mar-09
Page: 1 of 1

Groundwater S0068.4 S0068.2

1 Litre

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/gn)	Standard	Peak
0002	Acetone	d	1.02	2.79	ZB	
0040	d ₆ -Benzene	d	0.73	2.00	I.S.	Internal Standard
0049	Carbon tetrachloride	d	7.64	7 23	B.,	Contaminant
0054	Cyclohexane	Ь	10.7	67.7	70	Contaminant
0207	Toluene	Ь	0.45	0.5	IJ	Contaminant
0289	Butyl acetate	Ь	0.72	7.0	IJ	Contaminant
0316	Diacetone alcohol	Ь	080	8.0	i)	Contaminant
0335	d ₅ -Chlorobenzene	Ь	1.95	2.0	LS.	Internal Standard
0383	d ₁₀₋ p-Xylene	Ь	1.00	1.0	I.S.	Internal Standard
0563	d ₅ -Phenol	Ь	1.67	8.0	I.S.	Internal Standard
0860	d _s -Naphthalene	Ь	1.41	1.0	LS.	Internal Standard
1247	d ₂₀ -BHT	Ь	12.12	8.0	I.S.	Internal Standard
1261	BHT	Ь	0.70	0.5	BHT	Test Material
1273	1,6-Dioxacyclododecane-7,12-dione	⊥	0.18	0.1	BHT	Test Material
1321	Diethyl phthalate	Ь	0.24	0.2	BHT	Contaminant
1344	d ₃₄ -Hexadecane	Ь	1.48	1.0	l.S.	Internal Standard
1353	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	⊥	0.39	0.3	BHT	Contaminant
1361	Unknown 173, 55, 99, 84	n	0.97	9.0	BHT	Contaminant
1519	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	5.63	2.0	I.S.	Int. Std. + Contaminant
1528	Tris-(chloropropyl)phosphate isomer	Τ	0.24	0.2	BHT	Contaminant
1583	Di-isobutyl phthalate	Ь	0.92	9.0	BHT	Contaminant
2105	Di-(2-ethylhexyl) phthalate	Ъ	1.67	7.5	Sq	Contaminant
2174	d ₆₂ -Squalane	Ь	1.79	8.0	I.S.	Internal Standard

Internal standards used. Bz=d&Benzene, Cl=d5-Chlorobenzene, Xy=d10-p-Xyene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-di-butyA4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalene

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. A. James

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Tests marked @ Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

J. Dunning Laboratory Manager

Authorised By:

Appendix A Page 70

General Survey GCMS Analysis

Groundwater S0068.6 S0068.2 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 25/02/09 P Jackson WRc-NSF N22713 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

25-Feb-09 24-Mar-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/gn)	Standard	Peak
0040	q ₆ -Benzene	d	6.73	2.00	1.S.	Internal Standard
0049	Carbon tetrachloride	d	3.48	6 70	B.	Contaminant
0053	Cyclohexane	Ь	6.70	67.0	70	Contaminant
0206	Toluene	d	0.43	4.0	IJ	Contaminant
0289	Butyl acetate	_ d	0.33	0.3	IJ	Contaminant
0316	Diacetone alcohol	Ь	0.78	0.7	IJ	Contaminant
0335	d ₅ -Chlorobenzene	d	2.11	2.0	.S.I	Internal Standard
0382	d ₁₀₋ p-Xylene	Ь	1.01	1.0	l.S.	Internal Standard
0564	d ₅ -Phenol	_ d	1.33	8.0	l.S.	Internal Standard
0860	d _s -Naphthalene	Ь	1.47	1.0	.S.I	Internal Standard
1247	d ₂₀ -BHT	Ь	12.24	8.0	ı.S.	Internal Standard
1261	ВНТ	Ь	0.53	0.3	BHT	Test Material
1320	Diethyl phthalate	Ь	0.41	0.3	BHT	Contaminant
1343	d ₃₄ -Hexadecane	d	1.6	1.0	l.S.	Internal Standard
1352	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	1	0.49	0.3	BHT	Contaminant
1360	Unknown 173, 55, 99, 84	Π	1.24	0.8	BHT	Contaminant
1516	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	Ρ/T	6.37	2.0	I.S.	Int. Std. + Contaminant
1525	Tris-(chloropropyl)phosphate isomer		0.33	0.2	BHT	Contaminant
1581	Di-isobutyl phthalate	Ь	1.84	1.2	BHT	Contaminant
1659	Di-n-butyl phthalate	Ь	0.55	0.4	BHT	Contaminant
2103	Di-(2-ethylhexyl) phthalate	Ь	1.96	5.7	Sq	Contaminant
2174	d ₆₂ -Squalane	Ы	2.77	8.0	I.S.	Internal Standard

Internal standards used: Bz=d5-Benzene, C=d5-Chlorobenzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d6-Naphthalene, BHT = d20-25-df-buyk-4-nethyphenol, Hiv=d34-Hexadeciane, Ph=d10-Phenanthrene and Sq=d62-Squalane "Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: A. A. James

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. Alve Brush J. Dunning Laboratory Manager Authorised By:

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: と(4 09

Appendix A Page 72

General Survey GCMS Analysis

F20 Groundwater S0068.6 S0068.2 1 Litre Sample Type: Data System Code: Associated Blank: Sample Volume: Sample Code: Samples Received 25/02/09 P Jackson WRc-NSF N22713 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

Client:

25-Feb-09 24-Mar-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/gn)	Standard	Peak
0040	d ₆ -Benzene	ď	0.73	2.00	I.S.	Internal Standard
0049	Carbon tetrachloride	_ d	876	6 70	B.	Contaminant
0053	Cyclohexane	Ь	6.40	60	75	Contaminant
0206	Toluene	Ы	0.43	9.0	Ö	Contaminant
0289	Butyl acetate	Ь	0.33	0.3	CI	Contaminant
0316	Diacetone alcohol	Ь	0.78	0.7	CI	Contaminant
0335	d ₅ -Chlorobenzene	Ь	2.11	2.0	I.S.	Internal Standard
0382	d ₁₀₋ p-Xylene	Ь	1.01	1.0	I.S.	Internal Standard
0564	d ₅ -Phenol	Ь	1.33	8.0	I.S.	Internal Standard
0860	d _s -Naphthalene	Ь	1.47	1.0	I.S.	internal Standard
1247	d ₂₀ -BHT	ď	12.24	8.0	I.S.	Internal Standard
	ВНТ	d	0.53	0.3	BHT	Test Material
1320	Diethyl phthalate	Ь	0.41	0.3	BHT	Contaminant
1343	d ₃₄ -Hexadecane	Ь	1.6	1.0	I.S.	Internal Standard
1352	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	T	0.49	0.3	BHT	Contaminant
1360	Unknown 173, 55, 99, 84	n	1.24	8.0	BHT	Contaminant
1516	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	6.37	2.0	I.S.	Int. Std. + Contaminant
1525	Tris-(chloropropyl)phosphate isomer	⊢	0.33	0.2	BHT	Contaminant
1581	Di-isobutyl phthalate	Ь	1.84	1.2	BHT	Contaminant
1659	Di-n-butyl phthalate	Р	0.55	0.4	BHT	Contaminant
2103	Di-(2-ethylhexyl) phthalate	Ь	1.96	5.7	Sq	Contaminant
2174	d ₆₂ -Squalane	Ь	2.77	8.0	I.S.	Internal Standard

Internal standards used: Bz=66-Benzene, Cl=65-Chlorobenzene, Xy=d10-p-Xylene, Po=65-Phenol, Na=d6-Naphthalene, BHT = d20-26-dt-butyl-4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthene and Sq=d62-Squalane *Con.L. = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Reported By: # + Tames

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Laboratory Manager

Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 20/4/09

Appendix A Page 74

Client:

ANALYSIS REPORT

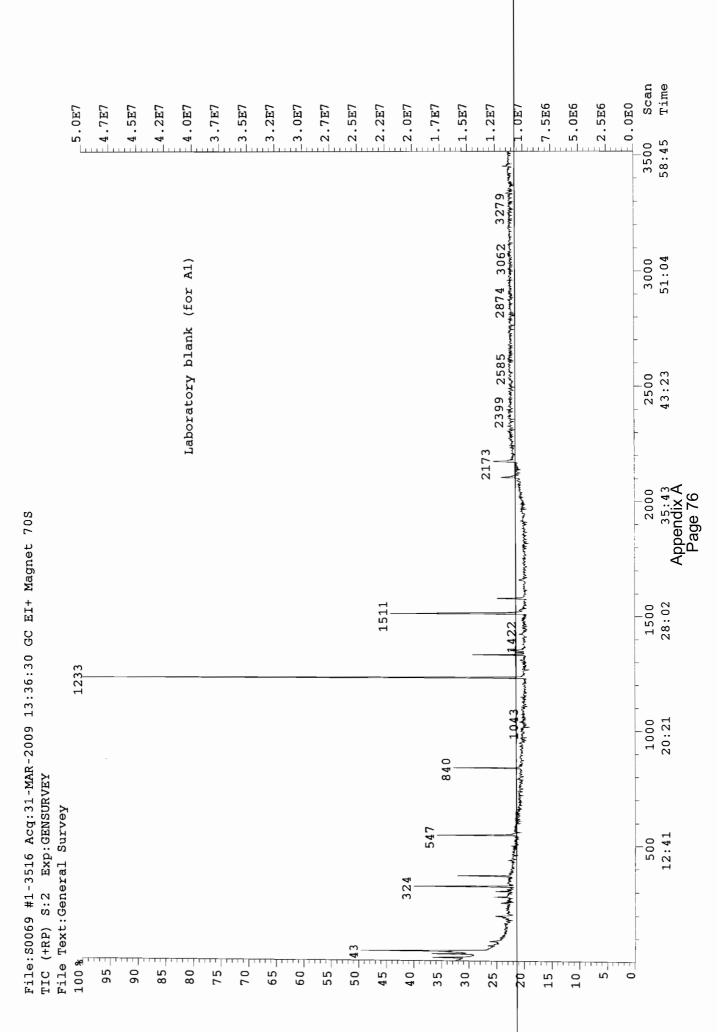
General Survey GCMS Analysis

F21 Groundwater S0068.7 S0068.2 1 Litre Sample Type: Data System Code: Associated Blank: Sample Volume: Sample Code: Samples Received 25/02/09 P Jackson WRc-NSF N22713 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

25-Feb-09 24-Mar-09 **ORG042** 1 of 1 Date Received Date Analysed: Method Ref: Page:

				(I/bn)	Standard	Peak
0002	Acetone	Ь	1.27	3.6	Bz	Contaminant
0041	d _e -Benzene	Ь	0.70	2.0	I.S.	Internal Standard
	Carbon tetrachloride	Ь	2 95	8.4	R,	Contaminant
0054	Cyclohexane	Ь	22	Ċ	-	Contaminant
	1,4-Dioxane	Ь	0.27	8.0	Bz	Contaminant
020	Toluene	Ь	0.26	0.3	C	Contaminant
0590	Butyl acetate	Ь	0.58	9.0	IJ	Contaminant
0316	Diacetone alcohol	Ь	0.57	9.0	IJ	Contaminant
	d ₅ -Chlorobenzene	Ь	1.81	2.0	I.S.	Internal Standard
	d ₁₀₋ p-Xylene	Ь	1.02	1.0	I.S.	Internal Standard
	d _s -Phenol	Ь	1.52	8.0	LS.	Internal Standard
0861	d _s -Naphthalene	Ь	1.27	1.0	LS.	internal Standard
1247	d ₂₀ -BHT	Ь	11.68	8.0	I.S.	Internal Standard
	BHT	Ь	09:0	0.4	BHT	Test Material
	Diethyl phthalate	Ь	0.20	0.1	BHT	Contaminant
1343	d ₃₄ -Hexadecane	Ь	1.41	1.0	LS.	Internal Standard
1351	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	⊥	0.36	0.2	BHT	Contaminant
1360	Unknown 173, 55, 99, 84	Ω	1.46	1.0	BHT	Contaminant
1516	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	5.07	2.0	I.S.	Int. Std. + Contaminant
1525	Tris-(chloropropyl)phosphate isomer	⊢	0.13	0.1	BHT	Contaminant
1580	Di-isobutyl phthalate	Ь	1.17	0.8	BHT	Contaminant
2104	Di-(2-ethylhexyl) phthalate	Ь	1.99	8.4	Sq	Contaminant
2174	d ₆₂ -Squalane	Ь	1.90	8.0	I.S.	Internal Standard

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown


Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: # . + Jaum

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. John Berune Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule. Authorised By:

J. Dunning Laboratory Manager

Date: 21/4/09

General Survey GCMS Analysis

Laboratory blank Bottled water S0069.2 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 03/03/09 P Jackson WRc-NSF N22717 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042 03-Mar-09 31-Mar-09 1 of 1 Date Analysed: Date Received Method Ref: Page:

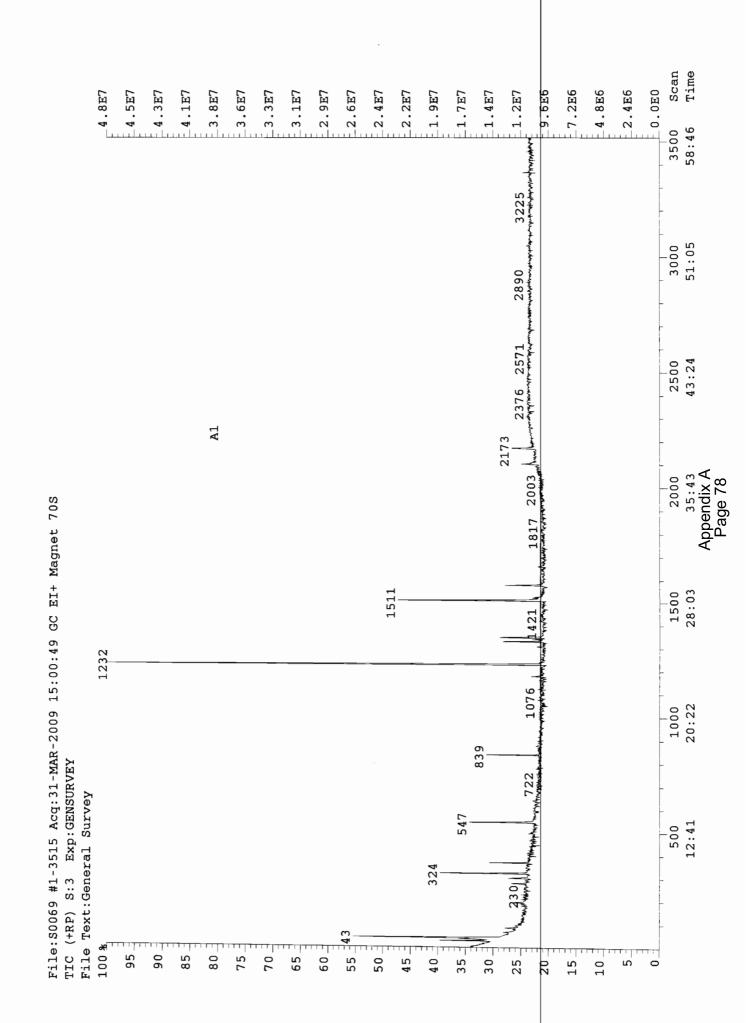
Scan	Compound	Con.L**	Con.L** Peak Area	Conc. (ug/l)	Internal Standard	Origin of Peak
0014	2-Methyl-1,3-dioxolane	⊢	69'0	2.1	Bz	Contaminant
0030	de-Benzene	Ь	99'0	2.0	l.S.	Internal Standard
0038	Carbon tetrachloride	Ь	0.18	0.5	Bz	Contaminant
0043	Cyclohexane	d	3.09	9.4	Bz	Contaminant
0197	Toluene	d	0.42	9.4	IJ	Contaminant
0279		d	0.39	9.0	ı	Contaminant
0303	Diacetone alcohol	Ь	0.43	9.0	IJ	Contaminant
0324	d _s -Chlorobenzene	Ь	1.99	2.0	l.S.	Internal Standard
0369	d ₁₀₋ p-Xylene	Ь	66.0	1.0	I.S.	Internal Standard
0547	d ₅ -Phenol	Р	2.24	8.0	I.S.	Internal Standard
0840	d ₈ -Naphthalene	ď	1.65	1.0	I.S.	Internal Standard
1233	d ₂₀ -BHT	Ь	10.48	8.0	I.S.	Internal Standard
1332	d ₃₄ -Hexadecane	Ь	1.29	1.0	I.S.	Internal Standard
1342	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	Τ	0.16	0.1	BHT	Contaminant
1352	Unknown 173, 55, 99, 84	n	0.46	0.4	BHT	Contaminant
1511	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	4.82	2.0	I.S.	Int. Std. + Contaminant
1525	Tris-(chloropropyl)phosphate isomer	Т	0.25	0.2	BHT	Contaminant
1579	Di-isobutyl phthalate	Ь	0.84	9.0	BHT	Contaminant
2104	Di-(2-ethylhexyl) phthalate	Ь	1.20	6.7	Sq	Contaminant
2173	d _{s2} -Squalane	Ь	1.43	8.0	I.S.	Internal Standard

Internal standards used: Bz=de-Benzene, Cl=dS-Chlorobenzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-dit-butyl-4-methylphenol, Hx=d3-4-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: 1+ 4 Farmer


Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. 12mm Dung

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

J. Dunning Laboratory Manager

Authorised By:

Date: 20 (4/09

· ·

Ģ

ŧ

General Survey GCMS Analysis

Groundwater S0069.3 S0069.2 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 03/03/09 P Jackson WRc-NSF 14907-0 N22717 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

Client:

31-Mar-09 03-Mar-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

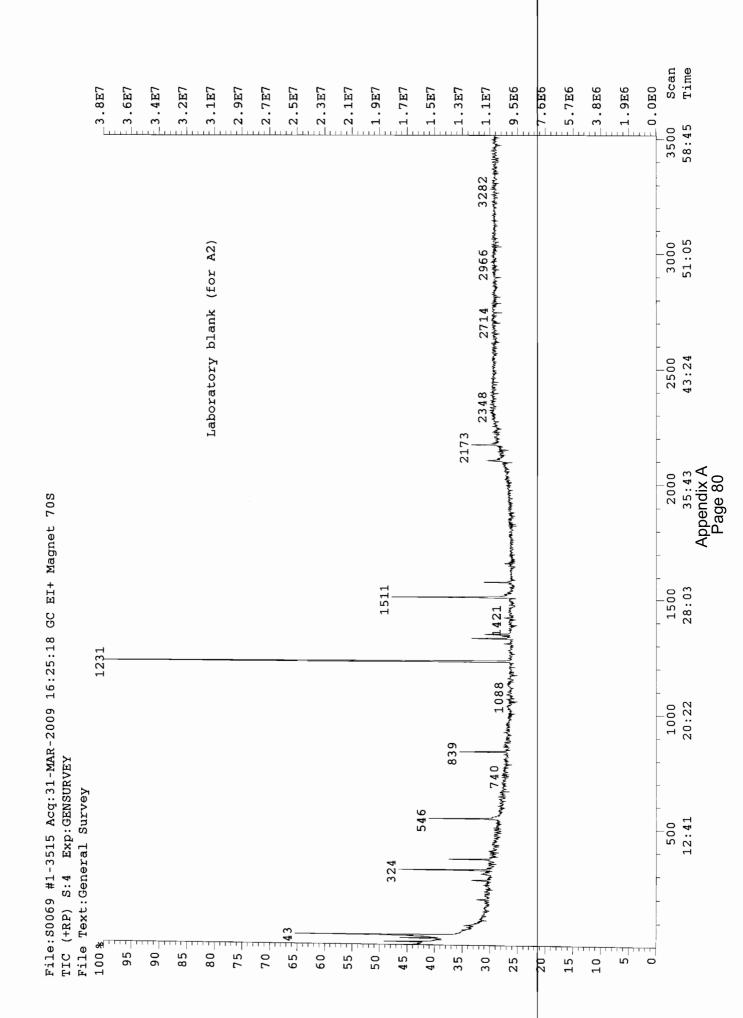
Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ug/l)	Standard	Peak
0029	d ₆ -Benzene	Ь	0.70	2.0	1.S.	Internal Standard
0038	Carbon tetrachloride	Ь	0.18	0.5	Bz	Contaminant
0043	Cyclohexane	Ь	3.01	8.6	Bz	Contaminant
0196	Toluene	Ь	0.33	0.4	IO	Contaminant
0279	Butyl acetate	Ь	0.35	9.0	I)	Contaminant
0302	Diacetone alcohol	۵	0.43	0.5	IO	Contaminant
0324	d ₅ -Chlorobenzene	Ь	1.70	2.0	1.S.	Internal Standard
0369	d ₁₀₋ p-Xylene	Ь	0.86	1.0	I.S.	Internal Standard
0547	d ₅ -Phenol	۵	1.98	8.0	I.S.	Internal Standard
0839	d _s -Naphthalene	Ь	1.09	1.0	I.S.	Internal Standard
1232	d ₂₀ -BHT	Ь	9.84	8.0	I.S.	Internal Standard
1308	Diethyl phthalate	Ь	0.27	0.2	BHT	Test Material
1331	d ₃₄ -Hexadecane	Ь	1.13	1.0	I.S.	Internal Standard
1341	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	_ T	0.31	0.3	BHT	Contaminant
1349	Unknown 173, 55, 99, 84	n	1.24	1.0	BHT	Contaminant
1511	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	5.20	2.0	I.S.	Int. Std. + Contaminant
1522	Tris-(chloropropyl)phosphate isomer	T	0.21	0.2	BHT	Contaminant
1579	Di-isobutyl phthalate	Ь	1.18	1.0	BHT	Contaminant
2104	Di-(2-ethyihexyl) phthalate	Ь	1.10	5.8	Sq	Contaminant
2173	d ₆₂ -Squalane	Ь	1.51	8.0	l.S.	Internal Standard

internal standards used. Bz=d6-Benzene, Cl=d5-Chlorobenzene, Xj=d10-pX/wene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-d8-buby-4-methyphenol, Hz=d3-Hexadocane, Ph=d10-Phenathrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: A. A. January.


Date: 20/4/09 Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. Jahr Dunis

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

J. Dunning Laboratory Manager

Authorised By:

A

ANALYSIS REPORT

General Survey GCMS Analysis

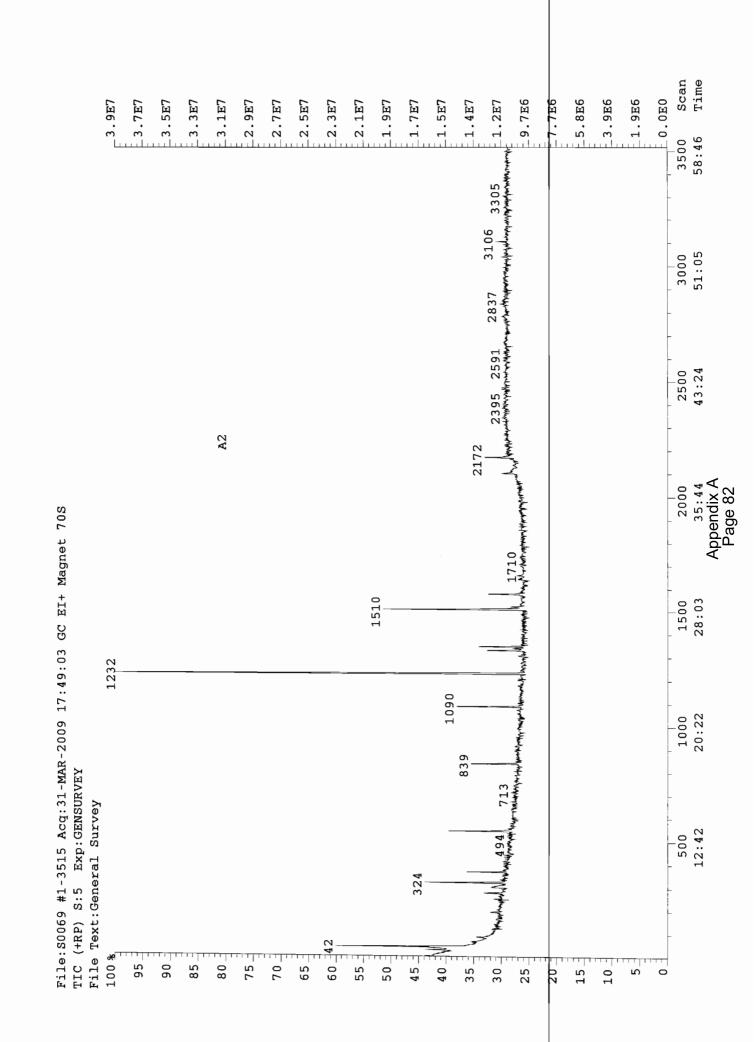
Laboratory blank Bottled water S0069.4 1 Litre n/a Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 06/03/09 P Jackson WRc-NSF 14907-0 N22722 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

Client:

06-Mar-09 31-Mar-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/bn)	Standard	Peak
0013	2-Methyl-1,3-dioxolane	Ţ	0.46	2.1	Bz	Contaminant
0029	de-Benzene	Ь	0.44	2.0	I.S.	Internal Standard
0038	Carbon tetrachloride	Ь	0.15	0.7	Bz	Contaminant
0043	Cyclohexane	۵	2.75	12.5	Bz	Contaminant
0196	Toluene	۵	0.33	0.5	ਹ	Contaminant
0278	Butyl acetate	۵	0.30	0.4	IO	Contaminant
0305	Diacetone alcohol	Ь	0.52	0.8	IJ	Contaminant
0324	d ₅ -Chlorobenzene	۵	1.34	2.0	I.S.	Internal Standard
0370	d ₁₀₋ p-Xylene	۵	0.87	1.0	I.S.	Internal Standard
0546		۵	1.84	8.0	I.S.	Internal Standard
0839	d _s -Naphthalene	۵	1.22	1.0	I.S.	Internal Standard
1231	d ₂₀ -BHT	۵	7.68	8.0	I.S.	Internal Standard
1308	Diethyl phthalate	۵	0.16	0.2	THB	Contaminant
1331	d ₃₄ -Hexadecane	۵.	0.74	1.0	I.S.	Internal Standard
1340	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	⊢	0.13	0.1	THB	Contaminant
1349	Unknown 173, 55, 99, 84	n	0.56	9.0	THB	Contaminant
1510	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/Τ	3.12	2.0	I.S.	Int. Std. + Contaminant
1522	Tris-(chloropropyl)phosphate isomer	⊥	0.16	0.2	THB	Contaminant
1579	Di-isobutyl phthalate	Ь	99.0	2.0	THB	Contaminant
2104	Di-(2-ethylhexyl) phthalate	Ь	0.94	5.2	bS	Contaminant
2173	d ₆₂ -Squalane	P	1.44	8.0	.S.I	Internal Standard

Internal standards used: Bz=66-Benzene, Cl=d5-Chlorobenzene, Xy=d10-p-Xydene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-dt-budy-4-methyphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrane and So=d52-Sp


**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: A. A. Farmer

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. Date: Jaky Dunier Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule. J. Dunning Laboratory Manager **Authorised By:**

5/5/09

General Survey GCMS Analysis

A2 Groundwater S0069.5 S0069.4 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 06/03/09 P Jackson WRc-NSF N22722 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042 06-Mar-09 31-Mar-09 1 of 1 Date Analysed: Date Received Method Ref: Page:

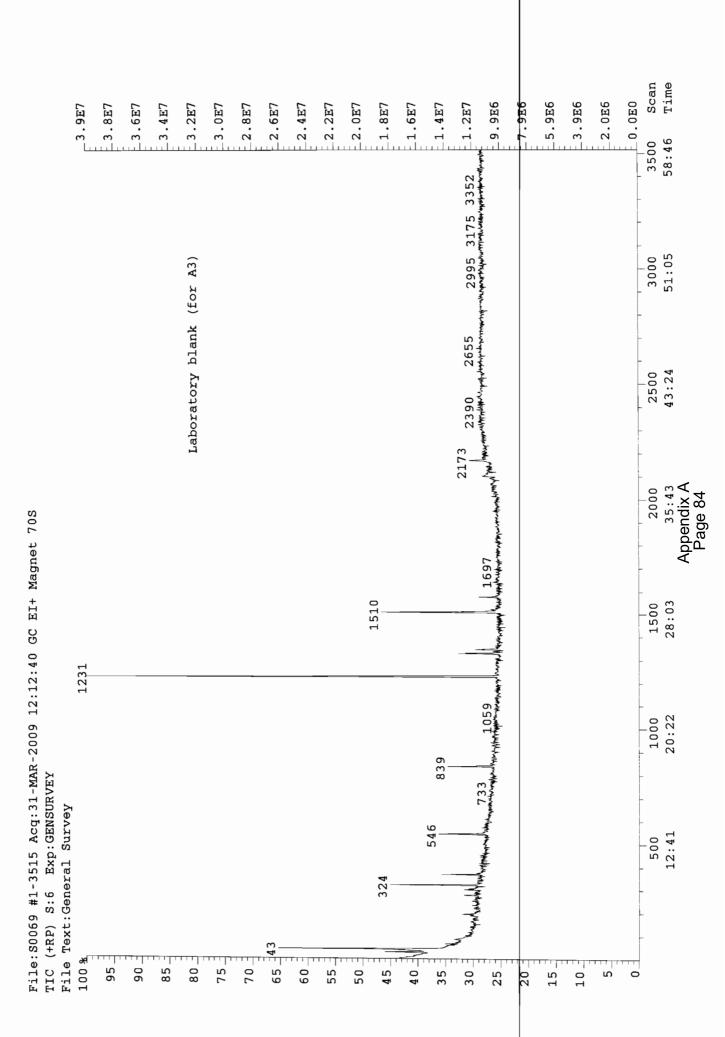
Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ug/I)	Standard	Peak
0029	d ₆ -Benzene	d	0.38	2.0	I.S.	Internal Standard
0037	Carbon tetrachloride	d	0.16	8.0	Bz	Contaminant
0042	Cyclohexane	Ь	2.76	14.5	Bz	Contaminant
0087	1,4-Dioxane	d	0.23	1.2	Bz	Contaminant
0196	Toluene	Ь	0.25	0.4	IJ	Contaminant
0279	Butyl acetate	Ь	0.47	8.0	IJ	Contaminant
0303	Diacetone alcohol	Ь	0.87	1.4	IJ	Contaminant
0324	d _s -Chlorobenzene	Ь	1.24	2.0	I.S.	Internal Standard
0370	d ₁₀₋ p-Xylene	Ь	0.65	1.0	I.S.	Internal Standard
0547	d ₅ -Phenol	Ь	1.74	8.0	I.S.	Internal Standard
0839	d _s -Naphthalene	d	1.10	1.0	I.S.	Internal Standard
1090	Unknown 43, 58, 41, 27	n	1.26	1.3	BHT	Test Material
1232	d ₂₀ -BHT	Ь	7.71	8.0	I.S.	Internal Standard
1309	Diethyl phthalate	Ь	0.23	0.2	BHT	Test Material
1331	d ₃₄ -Hexadecane	٩	0.81	1.0	.S.I	Internal Standard
1340	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	T	0.42	9.4	BHT	Contaminant
1348	Unknown 173, 55, 99, 84	n	1.15	1.2	BHT	Contaminant
1510	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	3.90	2.0	I.S.	Int. Std. + Contaminant
1522	Tris-(chloropropyl)phosphate isomer	Ţ	0.34	0.4	BHT	Contaminant
1578	Di-isobutyl phthalate	Ь	0.95	1.0	BHT	Contaminant
2104	Di-(2-ethylhexyl) phthalate	Р	0.89	3.4	Sq	Contaminant
2173	d ₆₂ -Squalane	Ь	2.09	8.0	l.S.	Internal Standard

Internal standards used: B2=46-Benzene, CI=45-Chlorobenzene, Xy=d10-p-Xylene, Po=45-Phenol, Na=48-Naphthalene, BHT = 420-28-dit-buyk-4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=462-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: H. A. Jennes


Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked ⁺: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

J. Dunning Laboratory Manager

Authorised By:

Date: 5/5/09

General Survey GCMS Analysis

 Contact Name:
 P. Jackson
 Sample Code:

 Client:
 WRc-NSF
 Sample Type:

 Client Reference:
 Samples Received 10/03/09
 Data System Code:

 WRc-NSF Reference:
 N22723
 Associated Blank:

 WRc-NSF Contract No:
 14907-0
 Sample Volume:

Method Ref: ORG042
Date Received 10-Mar-09
Date Analysed: 31-Mar-09
Page: 1 of 1

Laboratory blank Bottled water S0069.7

1 Litre

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/bn)	Standard	Peak
0029	d ₆ -Benzene	d	0.49	2.0	.S.I	Internal Standard
0038	Carbon tetrachloride	Ь	0.21	6.0	Bz	Contaminant
0043	Cyclohexane	۵	2.55	10.4	Bz	Contaminant
0196	Toluene	Ь	0.26	0.3	IJ	Contaminant
0279	Butyl acetate	Ь	0.32	9.0	IJ	Contaminant
0303	Diacetone alcohol	d	09'0	8.0	Ö	Contaminant
0324	d _s -Chlorobenzene	Ь	1.51	2.0	l.S.	Internal Standard
0370	d _{1o.} p-Xylene	Ь	82'0	1.0	I.S.	Internal Standard
0546	d _s -Phenol	Ь	1.57	8.0	I.S.	Internal Standard
0839	d _s -Naphthalene	d	0.94	1.0	I.S.	Internal Standard
1231	d ₂₀ -BHT	d	7.84	8.0	I.S.	Internal Standard
1331	d ₃₄ -Hexadecane	ď	66.0	1.0	I.S.	Internal Standard
1340	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	Ţ	0.27	6.0	BHT	Contaminant
1348	Unknown 173, 55, 99, 84	n	0.92	6.0	BHT	Contaminant
1510	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	3.25	2.0	I.S.	Int. Std. + Contaminant
1521	Tris-(chloropropyl)phosphate isomer	T	0.23	0.2	BHT	Contaminant
1578	Di-isobutyl phthalate	Ь	0.43	0.4	BHT	Contaminant
2104	Di-(2-ethylhexyl) phthalate	Ь	0.93	4.8	Sq	Contaminant
2173	d ₆₂ -Squalane	Ь	1.56	8.0	I.S.	Internal Standard

Internal standards used: BZ=d6-Benzene, CHe/Chlorobenzene, Xy=d10-p-Xytene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2.6-d8-but/Amethythenol, Nx=d3-4-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

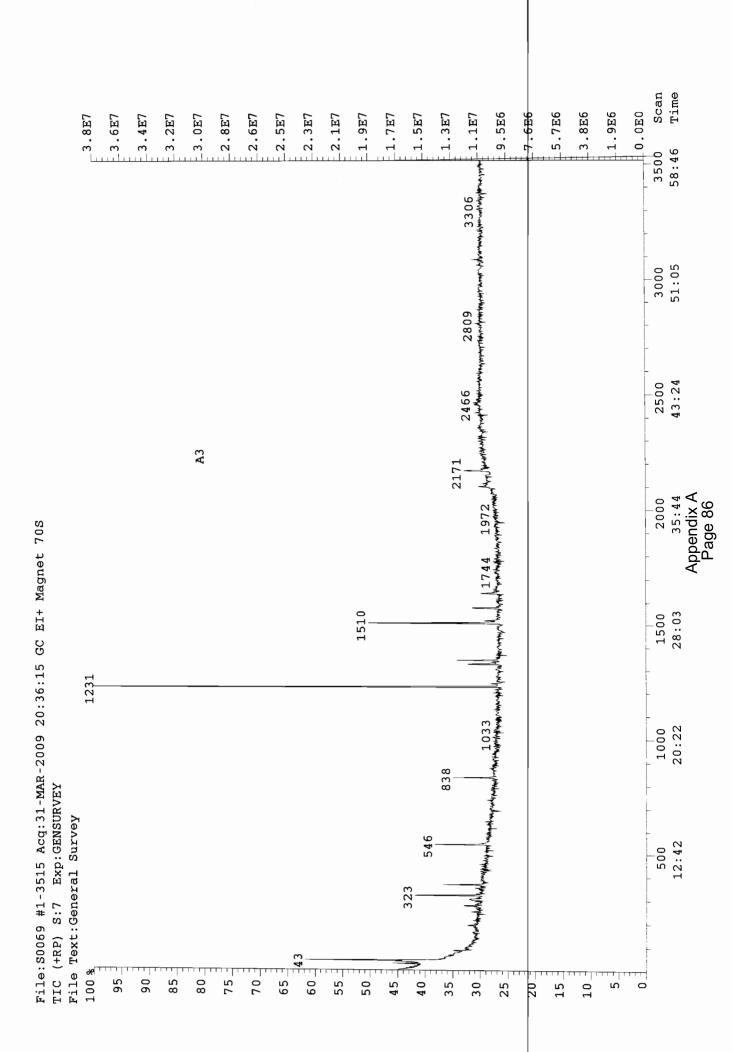
Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: # A James

Authorised By:


J. Dunning

Laboratory Manager

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 575709

General Survey GCMS Analysis

A3 Groundwater S0069.7 S0069.6 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 10/03/09 P Jackson WRc-NSF 14907-0 N22723 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

Client:

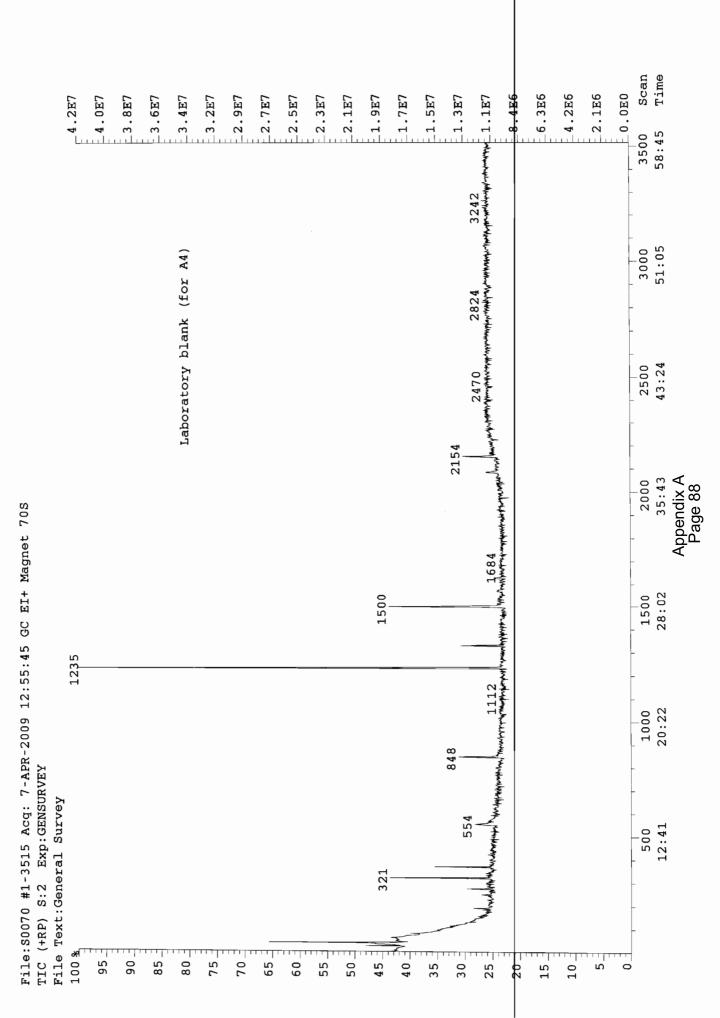
ORG042 10-Mar-09 31-Mar-09 1 of 1 Date Analysed: Page : Method Ref: Date Received

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/gn)	Standard	Peak
0029	de-Benzene	Ь	28.0	2.0	I.S.	Internal Standard
0038	Carbon tetrachloride	ď	0.22	1.2	Bz	Contaminant
0043	Cyclohexane	d	2.49	13.5	Bz	Contaminant
0279	Butyl acetate	Ь	0.25	9.0	IJ	Contaminant
0307	Diacetone alcohol	d	0.58	1.0	IJ	Contaminant
0323	ds-Chlorobenzene	d	1.13	2.0	I.S.	Internal Standard
0369	d ₁₀ -p-Xylene	Ь	0.75	1.0	l.S.	Internal Standard
0546	d _s -Phenol	Ь	1.17	8.0	.S:I	Internal Standard
0838	d _s -Naphthalene	d	98.0	1.0	I.S.	Internal Standard
1231	d ₂₀ -BHT	Ь	2.08	8.0	I.S.	Internal Standard
1245	BHT	Ь	0.27	0.3	THB	Test Material
1331	d ₃₄ -Hexadecane	Ь	92'0	1.0	.S.I	Internal Standard
1348	Unknown 173, 55, 99, 84	n	68.0	1.0	BHT	Contaminant
1510	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	1∕d	3.40	2.0	I.S.	Int. Std. + Contaminant
1520	Tris-(chloropropyl)phosphate isomer	⊥	0.21	0.2	BHT	Contaminant
1578	Di-isobutyl phthalate	d	0.72	8.0	BHT	Contaminant
1642	2-Phenyltridecane	⊢	85.0	0.7	BHT	Contaminant
2103	Di-(2-ethylhexyl) phthalate	Ь	0.64	3.9	Sq	Contaminant
2171	d ₆₂ -Squalane	Ь	1.30	8.0	I.S.	Internal Standard

Internal standards used. Bz=65-Benzene, Cl=5-Chiorobenzene, Xy=d10-p-Xylene, Po=d5-Penol, Na=d8-Naphthathaten, BHT = d20-26-d8-buyl-4-mathyphenol, Hx=d3-4-texadecane, Ph=d10-Pnenanthrene and Sq=d50-Squatan

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.


Reported By: A. A. Fourt,

fests marked ⁺: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. John Duniz J. Dunning Laboratory Manager Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 6/5/09

Client:

ANALYSIS REPORT

General Survey GCMS Analysis

Laboratory blank Bottled water S0070.2 1 Litre n/a Sample Type: Data System Code: Associated Blank: Sample Volume: Sample Code: Samples Received 11/03/09 P Jackson WRc-NSF 14907-0 N22724 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

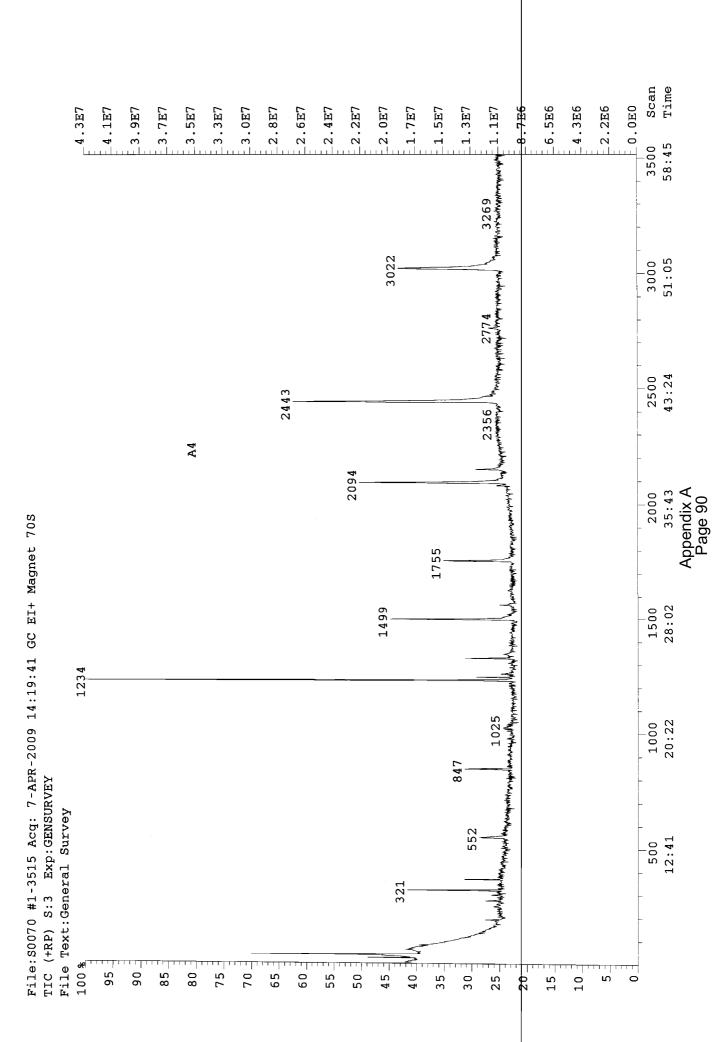
11-Mar-09 07-Apr-09 1 of 1 **ORG042** Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ng/l)	Standard	Peak
0025	d ₆ -Benzene	d	29.0	2.0	I.S.	Internal Standard
0033	Carbon tetrachloride	Ь	0.17	9.0	Bz	Contaminant
0039	Cyclohexane	d	3.16	11.1	Bz	Contaminant
0062	Methyl isobutyrate	1	0.16	9.0	Bz	Contaminant
0081	1,4-Dioxane	Ь	0.17	9.0	Bz	Contaminant
0191	Toluene	d	0.33	0.4	C	Contaminant
0275	Butyl acetate	_ d	0.53	0.7	Ö	Contaminant
0321	d ₅ -Chlorobenzene	d	1.58	2.0	I.S.	Internal Standard
0368	d ₁₀₋ p-Xylene	d	0.83	1.0	I.S.	Internal Standard
0554	d ₅ -Phenol	d	1.93	8.0	1.S.	Internal Standard
0848	d ₈ -Naphthalene	d	1.25	1.0	I.S.	Internal Standard
1235	d ₂₀ -BHT	ď	9.02	8.0	I.S.	Internal Standard
1330	d ₃₄ -Hexadecane	Ы	1.27	1.0	I.S.	Internal Standard
1500	d ₁₀ -Phenanthrene	ĽΔ	3.37	2.0	I.S.	Int. Std. + Contaminant
2085	Di-(2-ethylhexyl) phthalate	Ы	0.63	3.4	Sq	Contaminant
2154	d ₆₂ -Squalane	Ы	1.48	8.0	I.S.	Internal Standard

Internal standards used: 82-06-Berzene, Cl=dS-Chlorobenzene, Xy-d10-p-Xylene, Po=dS-Phenol, Na-d8-Naphthilaine, BHT = d20-26-d8-buly4-methyphenol, Hx-d34-Hexadecane, Ph-d10-Phenanthrene and Sque82-Squalare

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Samples were analysed as received unless otherwise stated.


Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Date: 13/5709 Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked ⁺: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. dhe Duning Authorised By:

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Reported By: A. A. Hamme

J. Dunning Laboratory Manager

General Survey GCMS Analysis

Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 11/03/09 P Jackson WRc-NSF N22724 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

Date Analysed: Date Received Method Ref: Page:

> Groundwater S0070.3 S0070.2 1 Litre

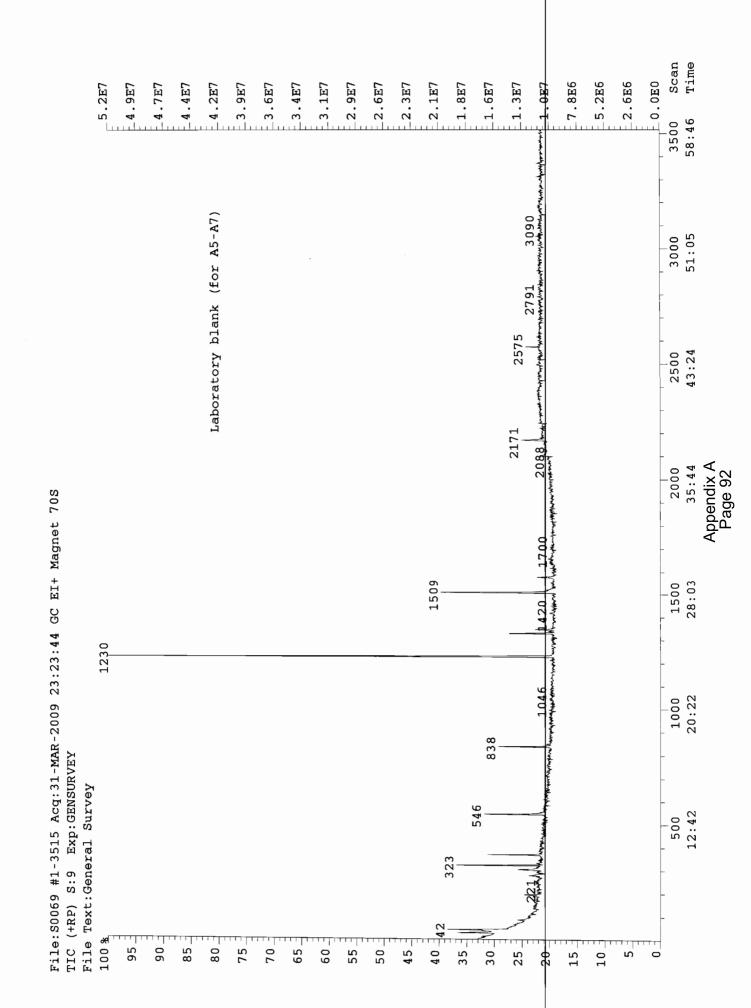
11-Mar-09 07-Apr-09 **ORG042** 1 of 1

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ng/l)	Standard	Peak
0025	d ₆ -Benzene	Ь	09'0	2.0	l.S.	Internal Standard
0034	Carbon tetrachloride	Ь	0.14	0.5	Bz	Contaminant
0039	Cyclohexane	d	3.01	10.0	Bz	Contaminant
0191	Toluene	d	0.3	9.0	IJ	Contaminant
0276	Butyl acetate	Ь	0.25	0.3	IJ	Contaminant
0300	Diacetone alcohol	Ь	0.21	0.3	ij	Contaminant
0321	d _s -Chlorobenzene	Ь	1.46	2.0	I.S.	Internal Standard
0368	d _{1o-} p-Xylene	Ы	0.88	1.0	I.S.	Internal Standard
0552	d ₅ -Phenol	ď	2.03	8.0	I.S.	Internal Standard
	d ₈ -Naphthalene	Ь	1.27	1.0	I.S.	Internal Standard
1234	d ₂₀ -BHT	Ь	7.08	8.0	l.S.	Internal Standard
1248	BHT	ď	0.27	0.3	BHT	Test Material
1262	1,6-Dioxacyclododecane-7,12-dione	T	0.51	9.0	BHT	Test Material
1330	d ₃₄ -Hexadecane	Ь	1.21	1.0	LS.	Internal Standard
1499	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	ÞΛ	4.33	2.0	l.S.	Int. Std. + Contaminant
1564	Di-isobutyl phthalate	Ь	0.54	9.0	BHT	Contaminant
1755	Unknown 42, 71, 41, 43	D	2.87	3.2	BHT	Test Material
2082	Di-(2-ethylhexyl) phthalate	Ь	0.30	1.4	Sq	Contaminant
2094	Unknown 42, 41, 71, 72	n	6.97	33.2	Sq	Test Material
2152	d ₆₂ -Squalane	Ь	1.68	8.0	1.S.	Internal Standard
2443	Unknown 42, 41, 71, 72	n	14.23	87.8	Sq	Test Material
2774	Unknown 113, 69, 41, 39	ח	0.51	2.4	Sq	Test Material
3022	Unknown 42, 41, 71, 72	n	11.90	26.7	Sq	Test Material

internal standards usert Bz=66-Benzene, Cl=65-Chlorobenzene, Xy=d10-p-Xylene, Po=65-Phenol, Na=68-Alsphthalene, BHT = 420-25-Gif-buty4-4-methylphenol, Hx=634-Hexadecane. Ph=d10-Phenanthrene and Sq=662-Squalane **Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.


Reported By: H. A. Journe

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule

Date: (3/5-/09 J. Dunning Laboratory Manager

Authorised By:

General Survey GCMS Analysis

Laboratory blank Bottled water 80069.9 Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 13/03/09 P Jackson WRc-NSF N22727 WRc-NSF Reference: Client Reference: Contact Name:

1 Litre

14907-0

WRc-NSF Contract No:

Client:

13-Mar-09 31-Mar-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

0029 d₀-Benzene 0037 Carbon tetrachloride 0042 Cyclohexane 0086 1,4-Dioxane 0196 Toluene 0278 Butyl acetate 0304 Diacetone alcohol 0323 d₀-Chlorobenzene 0369 d₀-Pkhenol 0546 d₀-Phenol 0548 d₀-Phenol 1230 d₀-Abhthalene 1330 d₃-Hexadecane 1347 Unknown 173, 55, 99, 84 1509 d₁-Phenanthrene + Tris-(chloropropyl) phosphate isomer 1521 Tris-(chloropropyl) phosphate isomer 1577 Di-isobutyl phthalate 2101 Di-isobutyl phthalate 2171 d₀-Squalane	Compound	 	Con.L** Peak Area	Conc.	Internal	ongno
de-Benz Carbon Cyclohe 1,4-Diox 1,4-Diox Toluene Butyl ac Diacetor d ₁ -Phen d ₂ -Phen d ₃ -Hext d ₃ -Hext d ₃ -Hext Di-sicobu Di-Sicobu				(ug/l)	Standard	Peak
Carbon Cyclohe 1,4-Diox Toluene Butyl ac Diaceton d ₁ -Phen d ₂ -Phen d ₃ -Hext Unknow Unknow Di-sicobut d ₂ -Shuti		Ь	0.77	2.0	l.S.	Internal Standard
Cyclohe 1,4-Diox Toluene Butyl ac Diacetor d ₁ -Phen d ₂ -Phen d ₃ -Hext Unknow Unknow Di-Sicobut d ₂ -Sotu		Ь	0.08	0.2	Bz	Contaminant
1,4-Diox Toluene Butyl ac Butyl ac Butyl ac Ga-Chlor Ga-Chlor Ga-Naph Ga-Naph Ga-Naph Ga-Hext Unknow Unknow Di-Sicotu		Ь	1.85	4.8	Bz	Contaminant
Toluene Butyl ac Butyl ac Diacetor d ₁ -Chlor d ₂ -Phen d ₃ -Hext Unknow Unknow Di-Sicolut d ₂ -Stuti		Ь	0.13	0.3	Bz	Contaminant
Butyl ac Diaceton d ₂ -Chlor d ₃ -Naph d ₅ -Naph d ₆ -Naph d ₄ -Hext Unknow Unknow Di-Sicobu Di-Sicobu		Ь	0.48	0.5	IJ	Contaminant
Diacetor d _{10,P} -Xy d _{10,P} -Xy d ₂₀ -BHT d ₂₄ -Hexx Unknow d ₁₀ -Pher Tris-(chi Di-siobu		Ь	0.55	9.0	IS	Contaminant
d ₅ -Chlor d ₁₀ p-Xy d ₅ -Naph d ₂ -Naph d ₂ -Naph d ₁₀ -Pher Di-siobu Di-siobu d ₂ -Squa		۵	1.07	1.1	CI	Contaminant
d ₁₀ P-Xy d ₆ -Phen d ₈ -Naph d ₂₀ -BHT Dixnow Dixnow Dixnow Dixnow Dixnow Dixnow		Ь	1.97	2.0	I.S.	Internal Standard
d ₆ -Phen d ₆ -Naph d ₈ -Naph d ₂₀ -BHT d ₂₄ -Hext Unknow Unknow Unknow Di-siobu Di-siobu Di-(2-etf d ₆₂ -Squa		Ь	1.25	1.0	LS.	Internal Standard
d _a -Naph d ₂₀ -BHT d ₃₄ -Hexx Unknow d ₁₀ -Pher Tris-(chi Di-siobu		Ь	2.08	8.0	I.S.	Internal Standard
d ₂₀ -BHT d ₂₄ -Hext Unknow d ₁₀ -Pher Tris-(chi Di-siobu d ₁₀ -Squa d ₁₀ -Squa		Ь	1.31	1.0	I.S.	Internal Standard
d _{st} -Hexx Unknow d ₁₀ -Pher Tris-(chi Di-siobu		Ь	10.73	8.0	I.S.	Internal Standard
Unknow d ₁₀ -Pher Tris-(chi Di-siobu		Ь	1.30	1.0	I.S.	Internal Standard
d ₁₀ -Pher Tris-(chi Di-siobu Di-(2-eti	9,84	n	0.54	0.4	BHT	Contaminant
Tris-(ch Di-siobu Di-(2-etl		P/T	4.19	2.0	1.S.	Int. Std. + Contaminant
Di-siobu Di-(2-ett da-Squa	hosphate isomer	T	0.26	0.2	BHT	Contaminant
Di-(2-etf		Ь	0.57	0.4	BHT	Contaminant
deSau	nalate	Ь	1.28	8.7	Sq	Contaminant
30		Ь	1.18	8.0	I.S.	Internal Standard

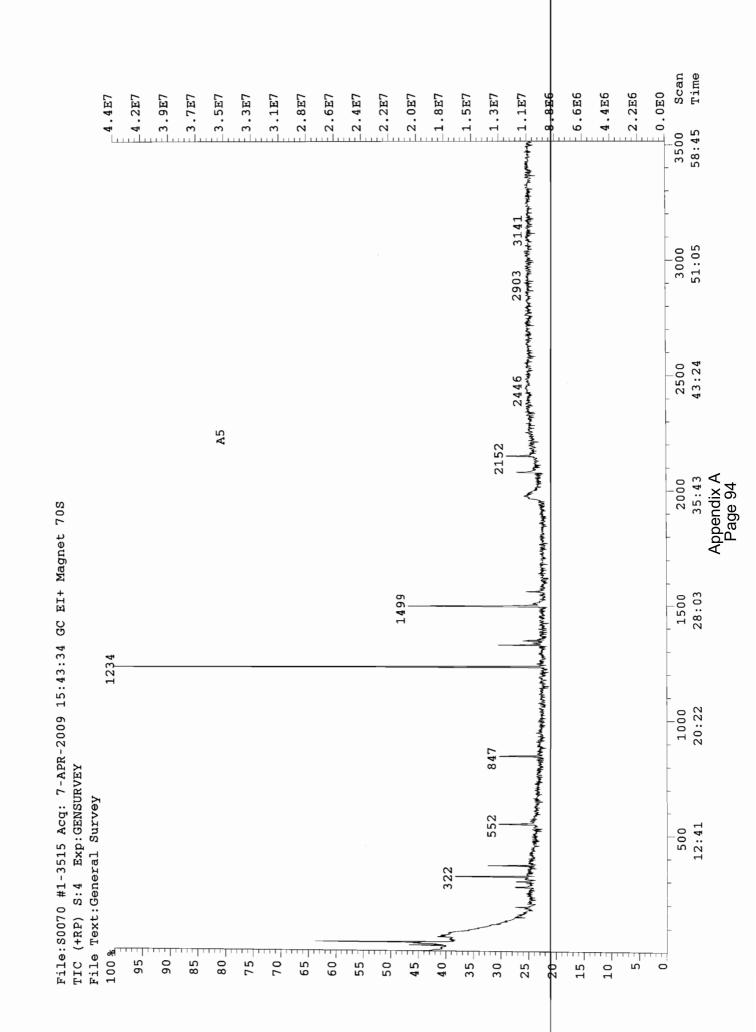
Internal standards used. Biz-a6 Benzene, CI-d5-Chlorobenzene, Xyz-d10-p-Xylane, Po-d5-Phenol, Nard8-Naphthalene, BHT = 420-25-d6-buyly-4-nethyphenol, Piz-d34-Hexadecane. Phz-d10-Phenanthrene and Sq-563-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Samples were analysed as received unless otherwise stated.

Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. A. January


Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. She Dunier J. Dunning Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule,

Date: 19(5/09

Laboratory Manager

General Survey GCMS Analysis

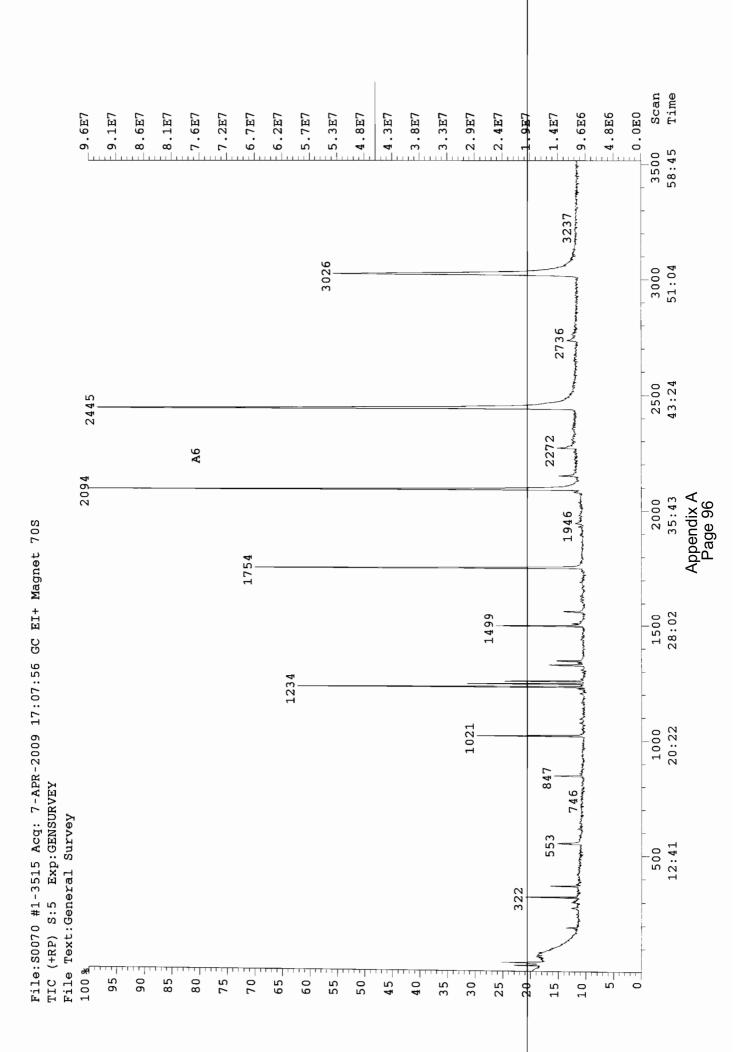
A5 Groundwater S0070.4 S0070.2 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 11/03/09 P Jackson WRc-NSF N22724 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

Client:

11-Mar-09 07-Apr-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/bn)	Standard	Peak
0025	de-Benzene	d	0.54	2.0	.S.I	Internal Standard
0033	Carbon tetrachloride	d	0.16	9.0	Bz	Contaminant
0038	Cyclohexane	Ь	3.01	11.1	Bz	Contaminant
0191	Toluene	d	0.24	0.3	IJ	Contaminant
0276	Butyl acetate	Ь	0.36	9.0	CI	Contaminant
0300	Diacetone alcohol	d	0.49	9.0	CI	Contaminant
0322	d ₅ -Chlorobenzene	d	1.60	2.0	I.S.	Internal Standard
0369	d ₁₀₋ p-Xylene	Ь	0.97	1.0	I.S.	Internal Standard
0552	d ₅ -Phenol	Ь	2.01	8.0	I.S.	Internal Standard
	d ₈ -Naphthalene	Ь	1.28	1.0	I.S.	Internal Standard
	d ₂₀ -BHT	Ь	8.64	8.0	I.S.	Internal Standard
	ВНТ	Ь	0.17	0.2	BHT	Test Material
1330	d ₃₄ -Hexadecane	Ь	0.89	1.0	l.S.	Internal Standard
1339	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	T	0.2	0.2	BHT	Contaminant
1348	Unknown 173, 55, 99, 84	n	0.65	9.0	BHT	Contaminant
1499	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	4.57	2.0	l.S.	Int. Std. + Contaminant
1510	Tris-(chloropropyl)phosphate isomer		0.24	0.2	BHT	Contaminant
1564	Di-isobutyl phthalate	Ь	0.54	5.0	BHT	Contaminant
1978	Unknown 42, 41, 71, 72 (carry over?)	n	4.75	22.0	Sq	Test Material
2082	Di-(2-ethylhexyl) phthalate	Ь	1.01	4.7	Sq	Contaminant
2152	d ₆₂ -Squalane	Ь	1.73	8.0	I.S.	Internal Standard

Internal standards used: Bz=46-Benzene, Cl=d5-Chlorobenzene, Xy=d10-p-Xylene, Po=d5-Phenoi, Na=d8-Naphthalene, BHT = d20-2,6-dit-buty/-4-methyphenoi, Hx=d34-Haxadecane, Ph=d10-Phenanthrene and Sq=d52-Squalans


**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: H.A. Farus,

Date: 18/5/09 Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. John Durune J. Dunning Laboratory Manager Authorised By:

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

.

.

General Survey GCMS Analysis

 Contact Name:
 P Jackson
 Sample Code:
 Associated Blank:

 Client:
 VVRc-NSF
 Sample Type:
 Client Reference:
 Client Reference:
 Client Reference:
 Associated Blank:
 Code:
 Sample Volume:
 14907-0
 Sample Volume:
 1

Method Ref: ORG042
Date Received 13-Mar-09
Date Analysed: 07-Apr-09
Page: 1 of 2

A6 Groundwater S0070.5

S0069.9 1 Litre

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/bn)	Standard	Peak
0025	d ₆ -Benzene	ď	0.80	2.0	I.S.	Internal Standard
0034	Carbon tetrachloride	Ь	3 46	6.9	Bz	Contaminant
0038	Cyclohexane	Д	6.70	4.0	Bz	Contaminant
0192	Toluene	Ь	0.55	9.0	ij	Contaminant
0275	Butyl acetate	Ь	0.60	9.0	IJ	Contaminant
0300	Diacetone alcohol	Ь	0.79	2.0	IJ	Contaminant
0322	d _s -Chlorobenzene	Ь	2.21	2.0	I.S.	Internal Standard
0369	d ₁₀₋ p-Xylene	Ь	1.22	1.0	LS.	Internal Standard
	d ₅ -Phenol	Ь	2.63	8.0	I.S.	Internal Standard
0847	d _s -Naphthalene	Ь	1.57	1.0	I.S.	Internal Standard
1021	Unknown 101, 42, 54, 27	n	5.41	3.3	1H8	Test Material
1206	4-Methylene-2,6-di-t-butyl-2,5-cyclohexadien-1-one	Τ	0.39	0.2	BHT	Test Material
1226	Unknown 45, 58, 115, 55	n	0.34	0.2	BHT	Test Material
1234	d ₂₀ -BHT	Ь	13.17	8.0	l.S.	Internal Standard
1248	BHT	Ь	4.32	5.6	BHT	Test Material
1259	1,6-Dioxacyclododecane-7,12-dione	Τ	3.37	2.0	BHT	Test Material
1329	d ₃₄ -Hexadecane	Ь	2.48	1.0	LS.	Internal Standard
1338	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	⊥	0.28	0.2	BHT	Contaminant
1347	Unknown 173, 55, 99, 84	n	1.32	8.0	BHT	Contaminant
1499	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	5.74	2.0	I.S.	Int. Std. + Contaminant
1509	Tris-(chloropropyl)phosphate isomer	⊥	0.48	0.3	BHT	Contaminant
1563	Di-isobutyl phthalate	Ь	1.41	6.0	BHT	Contaminant
1754	Unknown 42, 71, 41, 43 fM ⁺ 288l	n	19.12	11.6	BHT	Test Material
2094	Unknown 42, 41, 71, 39 [M ⁺ 360]	n	41.16	153.9	bS	Test Material

internal standards used. BE-86-Benzene, CI-dS Chiorobenzene, Xy-d10-p-Xylene, Po-dS-Phenol, Navd8-Naphthalene, BHT = d20-26-dt busyl-4-methyphenol, Hord34-Hexadecum. Ph-d10-Phenanthrene and Sq-edS-Squabne

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

General Survey GCMS Analysis

Samples Received 13/03/09 P Jackson WRc-NSF 14907-0 N22727 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

A6 Groundwater S0070.5 80069.9 Data System Code: Associated Blank: Sample Code: Sample Type:

1 Litre

Sample Volume:

13-Mar-09 07-Apr-09 **ORG042** 2 of 2

Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/bn)	Standard	Peak
2152	d ₆₂ -Squalane	d	2.14	8.0	I.S.	Internal Standard
2272	Unknown 42, 41, 71, 72	n	2.69	10.1	Sq	Test Material
2445	Unknown 42, 41, 71, 72	n	74.38	278.1	Sq	Test Material
2736	Unknown 42, 41, 71, 72	n	2.06	7.7	Sq	Test Material
3026	Unknown 42, 71, 41, 72 [M* 504]	n	64.43	240.9	Sq	Test Material

Tribulation of Benzene, Cl=dS-Chlorobenzene, Xy=d10-p-Xylene, Po=dS-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-di-bufy.4-methyphenol, Hz=d3-Hazadecane, Ph=d10-Phenanthrene and Sq=d82-Squalan

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown


Reported By: # . # . Farmer,

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Authorised By:

Date: 19 (5/09 Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

J. Dunning Laboratory Manager

Client:

ANALYSIS REPORT

General Survey GCMS Analysis

A7 Groundwater S0070.5 80069.9 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 13/03/09 P Jackson WRc-NSF N22727 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

ORG042 13-Mar-09 07-Apr-09 1 of 1 Date Analysed: Date Received Method Ref: Page:

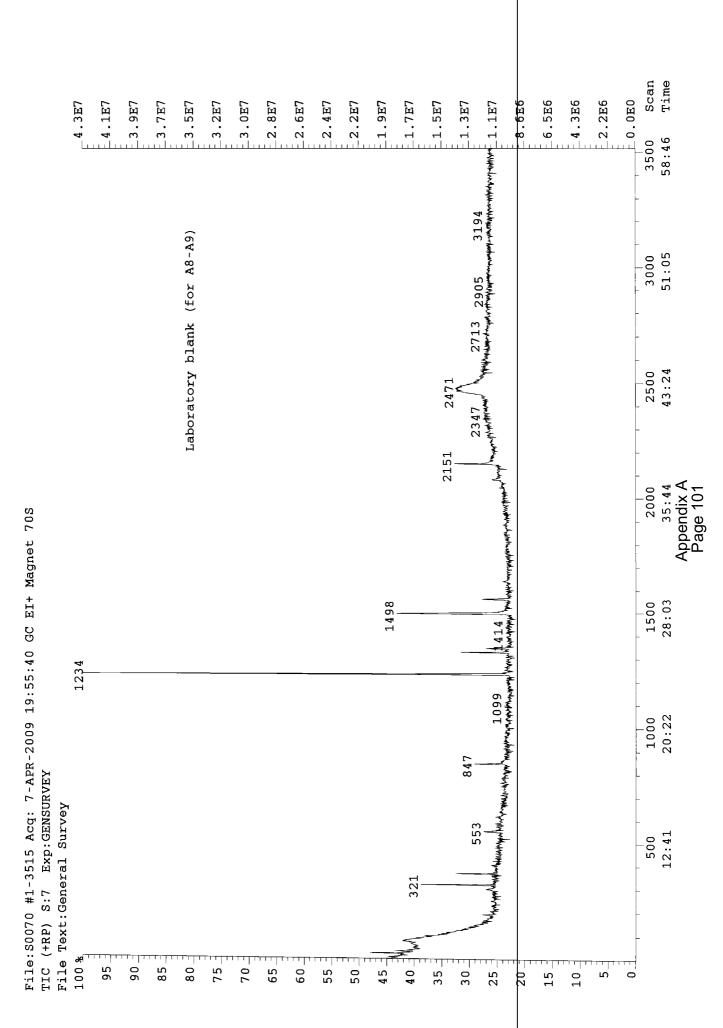
Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
		1		(I/BI)	Standard	Реак
0023	d ₆ -Benzene	Ь	0.73	2.0	l.S.	Internal Standard
0032	Carbon tetrachloride	Ь	1 75	4.8	Bz	Contaminant
0037	Cyclohexane	Ь	61:1	ř	BZ	Contaminant
0191	Toluene	Ь	0.3	0.3	ت ت	Contaminant
0275	Butyl acetate	Ь	0.37	9.0	Ö	Contaminant
0301	Diacetone alcohol	Ь	0.75	8.0	IJ	Contaminant
0321	d ₅ -Chlorobenzene	Ь	1.92	2.0	I.S.	Internal Standard
0369	d ₁₀₋ p-Xylene	Ь	1.01	1.0	I.S.	Internal Standard
0551	d _s -Phenol	Ь	2.04	8.0	LS.	Internal Standard
0847	d ₈ -Naphthalene	Ь	1.43	1.0	I.S.	Internal Standard
1233	d ₂₀ -BHT	Ь	11.28	8.0	LS.	Internal Standard
1247	BHT	Ь	0.26	0.2	BHT	Test Material
1329	d ₃₄ -Hexadecane	Ь	1.38	1.0	I.S.	Internal Standard
1338	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	T	0.28	0.2	BHT	Contaminant
1345	Unknown 173, 55, 99, 84	n	1.69	1.2	BHT	Contaminant
1498	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/Τ	5.08	2.0	I.S.	Int. Std. + Contaminant
1509	Tris-(chloropropyl)phosphate isomer	1	0.25	0.2	BHT	Contaminant
1562	Di-isobutyl phthalate	Р	0.97	0.7	BHT	Contaminant
1993	Unknown 42, 41, 71, 72 IM ⁺ 576} (carry over?)	Ú	25.37	68.8	Sq	Test Material
2080	Di-(2-ethylhexyl) phthalate	Ь	0.74	2.0	Sq	Contaminant
2151	d ₆₂ -Squalane	Ь	2.95	8.0	LS.	Internal Standard

Internal standards used. BZ=65-Benzene, Cl=65-Chloroberzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d6-Naphthalene, BHT = d20-25-di-buyl-4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: # . Towns


Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

J. Dunning Laboratory Manager

Authorised By:

Date: 19/5709

General Survey GCMS Analysis

Laboratory blank Bottled water Sample Code: Sample Type: Samples Received 16/03 P Jackson WRc-NSF N22729 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

16-Mar-09 07-Apr-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

7.		
S0070.7	n/a	1 Litre
Data System Code:	Associated Blank:	Sample Volume:
3/09		

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/Bn)	Standard	Peak
0023	d _e -Benzene	d	0.70	2.0	I.S.	Internal Standard
0034	2-Chloro-2-methylbutane	d	0.42	1.2	Bz	Contaminant
0300	Diacetone alcohol	Ь	0.54	2.0	Ö	Contaminant
0321	d ₅ -Chlorobenzene	Ь	1.47	2.0	I.S.	Internal Standard
0369	d ₁₀₋ p-Xylene	Ы	68.0	1.0	I.S.	Internal Standard
0553	d ₅ -Phenol	d	1.44	8.0	l.S.	Internal Standard
0847	d _s -Naphthalene	d	1.26	1.0	I.S.	internal Standard
1234	d₂₀-BHT	d	9.53	8.0	I.S.	Internal Standard
1329	d ₃₄ -Hexadecane	d	1.10	1.0	I.S.	Internal Standard
1346	Unknown 173, 55, 99, 84	n	0.63	0.5	BHT	Contaminant
1498	d ₁₀ -Phenanthrene + Tris-(chloropropyl) phosphate isomer	P/T	4.17	2.0	.S.I	Int. Std. + Contaminant
1508	Tris-(chloropropyl) phosphate isomer	Ţ	0.10	0.1	BHT	Contaminant
1563	Di-siobutyl phthalate	d	0.93	8.0	BHT	Contaminant
2080	Di-(2-ethylhexyl) phthalate	d	69'0	2.4	Sq	Contaminant
2151	d ₆₂ -Squalane	d	2.30	8.0	l.S.	Internal Standard
2471	Unknown 42, 41, 71, 72 (carry over?)	n	11.81	41.1	Sq	Contaminant

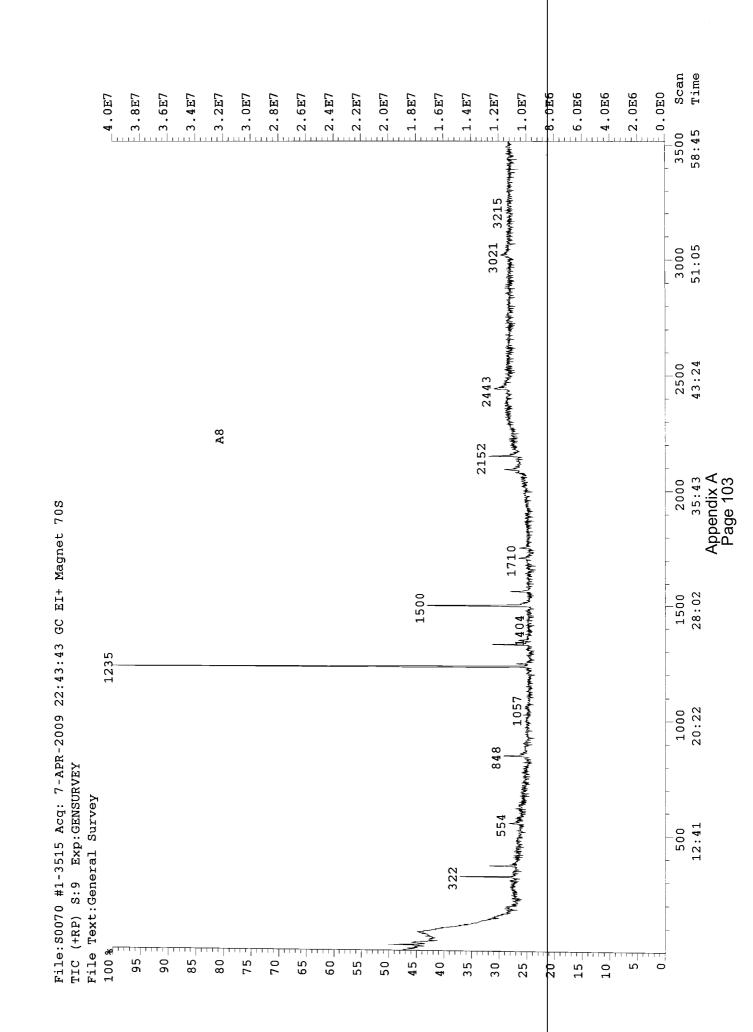
Internal standards used; BZ-66-Benzene, CI=d5-Chlorobenzene, Xy=d10-p-Xyene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-d1-buth.4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule. Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Samples were analysed as received unless otherwise stated.

Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. H. Jenner


Date: 28/5/09

J. Dunning Laboratory Manager

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Shr Dunder

Authorised By:

General Survey GCMS Analysis

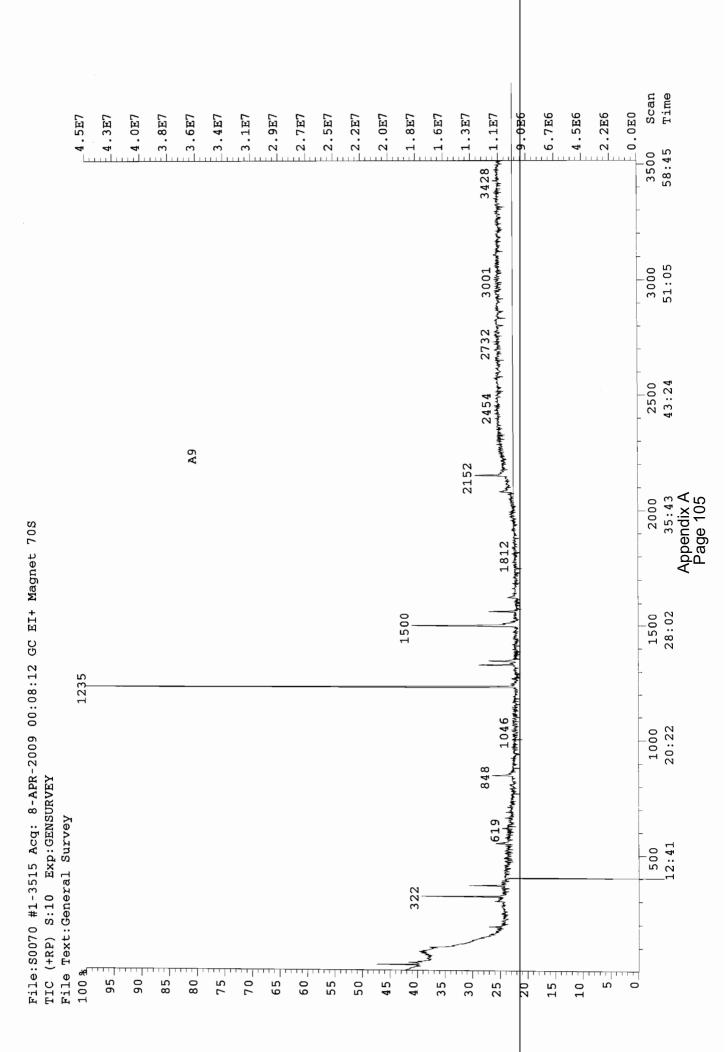
A8 Groundwater S0070.9 S0070.7 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 16/03/09 WRc-NSF P Jackson 14907-0 N22729 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042 16-Mar-09 07-Apr-09 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/bn)	Standard	Peak
0024	d ₆ -Benzene	Ь	0.80	2.0	I.S.	Internal Standard
0033	Carbon tetrachloride	Ь				Contaminant
0035	2-Chloro-2-methylbutane	T	2.46	6.2	Bz	Contaminant
0038	Cyclohexane	Ь				Contaminant
0322	d ₅ -Chlorobenzene	Ь	1.23	2.0	I.S.	Internal Standard
0370	d ₁₀₋ p-Xylene	Ь	0.63	1.0	I.S.	Internal Standard
0554	d ₅ -Phenol	Ь	1.14	8.0	.S.I	Internal Standard
0848	d _s -Naphthalene	Ь	1.08	1.0	l.S.	Internal Standard
1235	d ₂₀ -BHT	Р	8.56	8.0	I.S.	Internal Standard
1248	BHT	Ь	0.22	0.2	BHT	Test Material
1330	d ₃₄ -Hexadecane	Ь	6.0	1.0	1.S.	Internal Standard
1349	Unknown 173, 55, 99, 84	n	0.39	6.0	BHT	Contaminant
1500	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	3.67	2.0	l.S.	Int. Std. + Contaminant
1509	Tris-(chloropropyl)phosphate isomer	Τ	0.16	0.1	BHT	Contaminant
1564	Di-isobutyl phthalate	Ь	0.80	2.0	BHT	Contaminant
1710	Sulphur (S ₈)	n	0.33	0.3	BHT	Test Material
1754	Unknown 42, 71, 41, 55	n	0.36	1.5	Sq	Test Material
2081	Di-(2-ethylhexyl) phthalate	Ь	0.31	1.3	Sq	Contaminant
2095	Unknown 42, 41, 71, 39	n	0.79	3.3	Sq	Test Material
2152	d ₆₂ -Squalane	Ъ	1.90	8.0	I.S.	Internal Standard
2443	Unknown 42, 71, 41, 72	n	1.11	4.7	bS	Test Material

Total Sect B2-56-Benzene, Cl=G-Chlorobenzene, Xy-ad10-p-Xylene, Pa-65-Phenot, Na=08-Naphthalene, BHT = 202-26-dibuty4-methyphenol, Hy=254-Hexadecane, Ph=410-Phenanthrene and Sq=diS2-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown


Samples were analysed as received unless otherwise stated.

Reported By: A. A. Faunce

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule. Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Laboratory Manager Authorised By:

Date: 28/57/09

General Survey GCMS Analysis

 Contact Name:
 P Jackson
 Sample Code:

 Client:
 WRc-NSF
 Sample Type:

 Client Reference:
 Samples Received 16/03/09
 Data System Code:

 WRc-NSF Reference:
 N22729
 Associated Blank:

 WRc-NSF Contract No:
 14907-0
 Sample Volume:

Method Ref: ORG042
Date Received 16-Mar-09
Date Analysed: 07-Apr-09
Page: 1 of 1

Groundwater \$0070.10 \$0070.7 1 Litre

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ug/l)	Standard	Peak
0024	qe-Benzene	Ь	0.63	2.0	I.S.	internal Standard
0035	2-Chloro-2-methylbutane	1	0.24	8.0	Bz	Contaminant
0191	Toluene	ď	0.29	0.4	CI	Contaminant
0322	d _s -Chlorobenzene	Ь	1.49	2.0	I.S.	Internal Standard
0370	d ₁₀ -p-Xylene	Ь	0.86	1.0	I.S.	Internal Standard
0552	d _s -Phenoi	ď	0.99	8.0	I.S.	Internal Standard
0848	ds-Naphthalene	Ь	06.0	1.0	I.S.	Internal Standard
1235	d ₂₀ -BHT	ď	9.38	8.0	I.S.	Internal Standard
1330	d ₃₄ -Hexadecane	Ь	0.86	1.0	I.S.	Internal Standard
1347	Unknown 173, 55, 99, 84	n	1.18	1.0	BHT	Contaminant
1500	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	1/d	4.80	2.0	I.S.	Int. Std. + Contaminant
1509	Tris-(chloropropyl)phosphate isomer	Ţ	0.16	0.1	BHT	Contaminant
1564	Di-isobutyl phthalate	Ь	0.82	0.7	BHT	Contaminant
1625	2-Phenyltridecane		0.40	0.3	BHT	Contaminant
2082	Di-(2-ethylhexyl) phthalate	d	0.90	3.9	Sq	Contaminant
2152	d ₆₂ -Squalane	d	1.84	8.0	I.S.	Internal Standard

Internal standards usect. B2=65-Benzone, Cl=65-Chlorobenzone, Xy=d10-p-Xylene, Po=65-Phenol, Nard8-Naphthalene, BHT = 420-26-dit-buty4-4-methylphenol, Hx=d34-Hexadecane. Ph=d10-Phenonthrene and Sq=d62-Squatane

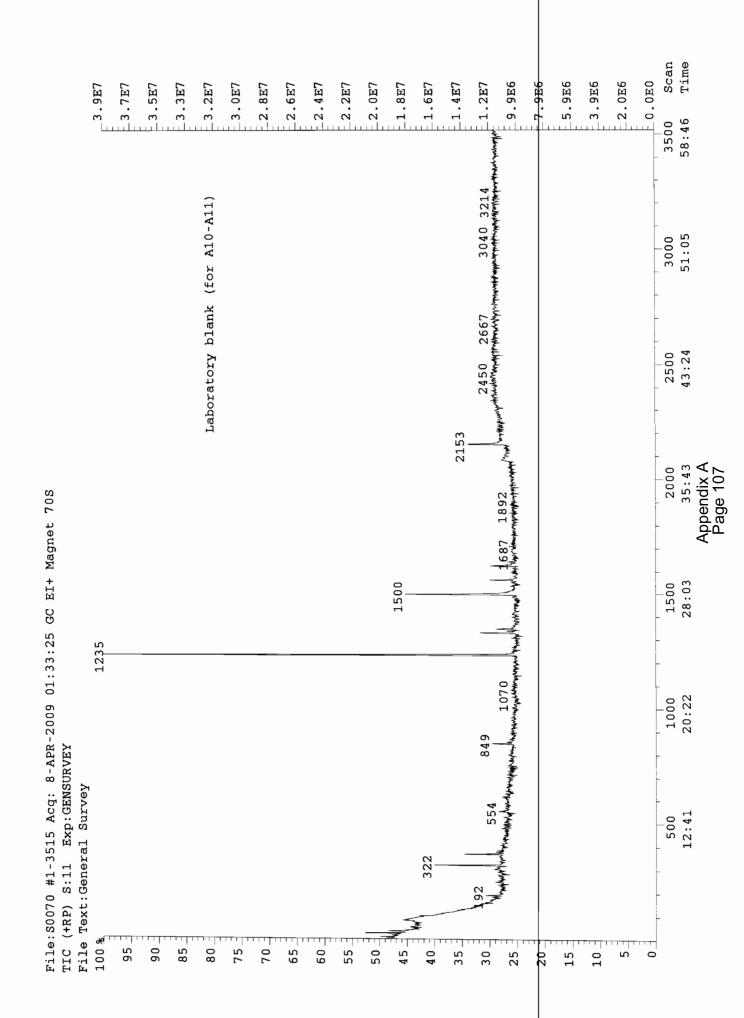
**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of LIKAS Acces

Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Tests marked \$: Not included in the WRo-NSF UKAS Accreditation Schedule.


<u>restitution</u> <u>Tests marked @: Tests not performed by WRo-NSF, approved eubeontreater is not UKAS accredited for this tr</u>

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Reported By: H. + Farmer

Authorised By: J. Dunning
Laboratory Manager

Date: 28/5/69

General Survey GCMS Analysis

Laboratory blank Bottled water S0070.11 1 Litre n/a Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 19/03/09 P Jackson WRc-NSF N22732 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

Client:

19-Mar-09 08-Apr-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/bn)	Standard	Peak
6000	2-Methyl-1,3-dioxolane	T	0.10	0.3	Bz	Contaminant
0025	d ₆ -Benzene	Ь	0.65	2.0	I.S.	Internal Standard
0033	Carbon tetrachloride	P	0.35	11	R7	Contaminant
0035	2-Chloro-2-methylbutane	Ъ	6.60	-:		Contaminant
0192	Toluene	Ь	0.37	0.5	CI	Contaminant
0322	d ₅ -Chlorobenzene	Ь	1.36	2.0	1.S.	Internal Standard
0370	d ₁₀₋ p-Xylene	Ь	0.70	1.0	I.S.	Internal Standard
0554	d ₅ -Phenol	Ь	1.38	8.0	I.S.	Internal Standard
0849	d _s -Naphthalene	Ь	1.06	1.0	l.S.	Internal Standard
1235	d ₂₀ -BHT	Ь	8.39	8.0	I.S.	Internal Standard
1331	d ₃₄ -Hexadecane	Ь	0.84	1.0	I.S.	Internal Standard
1339	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate		0.21	0.2	BHT	Contaminant
1348	Unknown 173, 55, 99, 84	n	0.59	9.0	BHT	Contaminant
1500	d ₁₀ -Phenanthrene + Tris-(chloropropyl) phosphate isomer	Ρ/T	4.00	2.0	I.S.	Int. Std. + Contaminant
1564	Di-siobutyl phthalate	Ь	0.93	6.0	BHT	Contaminant
1626	2-Phenyltridecane	T	0.64	9.0	BHT	Contaminant
2082	Di-(2-ethylhexyl) phthalate	Ь	0.88	3.9	Sq	Contaminant
2153	d ₆₂ -Squalane	Ь	1.82	8.0	l.S.	Internal Standard

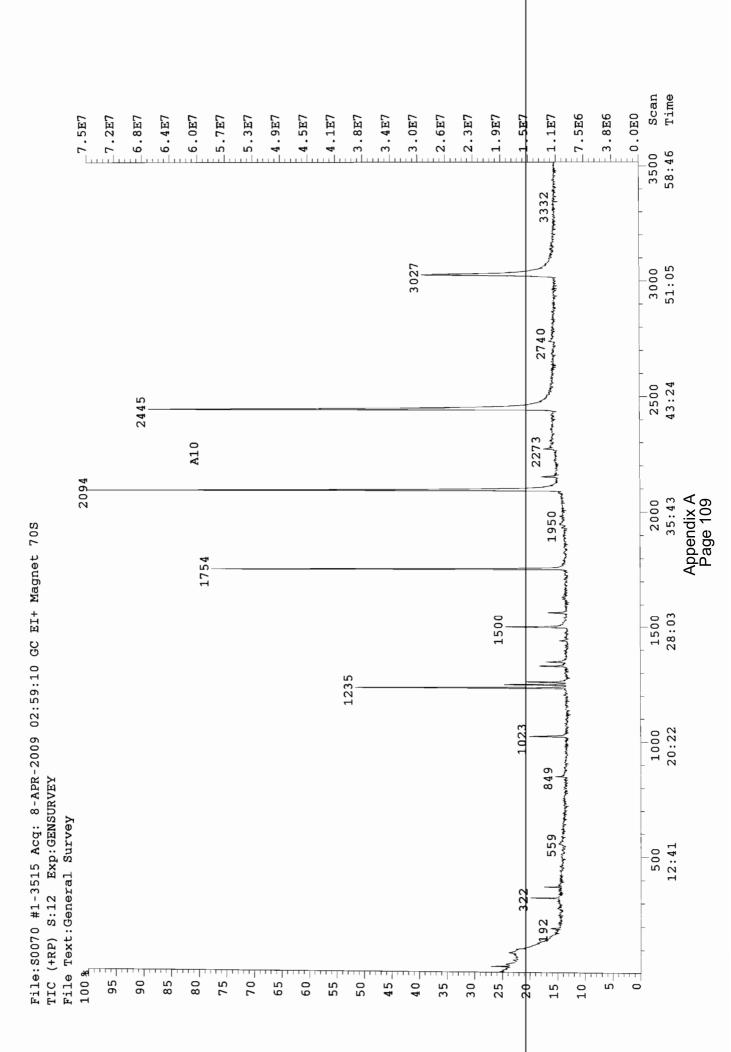
Internal standards used; Bz=d6-Benzene, CH=d5-Chlorobenzene, Xy=d10-p-Xykene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-dit-buty-4-methylphenol, Hx=d3-4-Heusdecane, Ph=d10-Phenanthrene and Sq=d62-Squatene

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: A. A. Jenner


Der Demis J. Dunning Laboratory Manager Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRC-NSF UKAS Accreditation Schedule.

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Date: 2/6/09

General Survey GCMS Analysis

 Contact Name:
 P Jackson
 Sample

 Client:
 WRc-NSF
 Sample

 Client Reference:
 Samples Received 19/03/09
 Data Sy

 WRc-NSF Reference:
 N22732
 Associa

 WRc-NSF Contract No:
 14907-0
 Sample

Sample Code: A10
Sample Type: Groundwater
Data System Code: S0070.12
Associated Blank: S0070.11
Sample Volume: 1 Litre

Method Ref: ORG042

Date Received 19-Mar-09

Date Analysed: 08-Apr-09

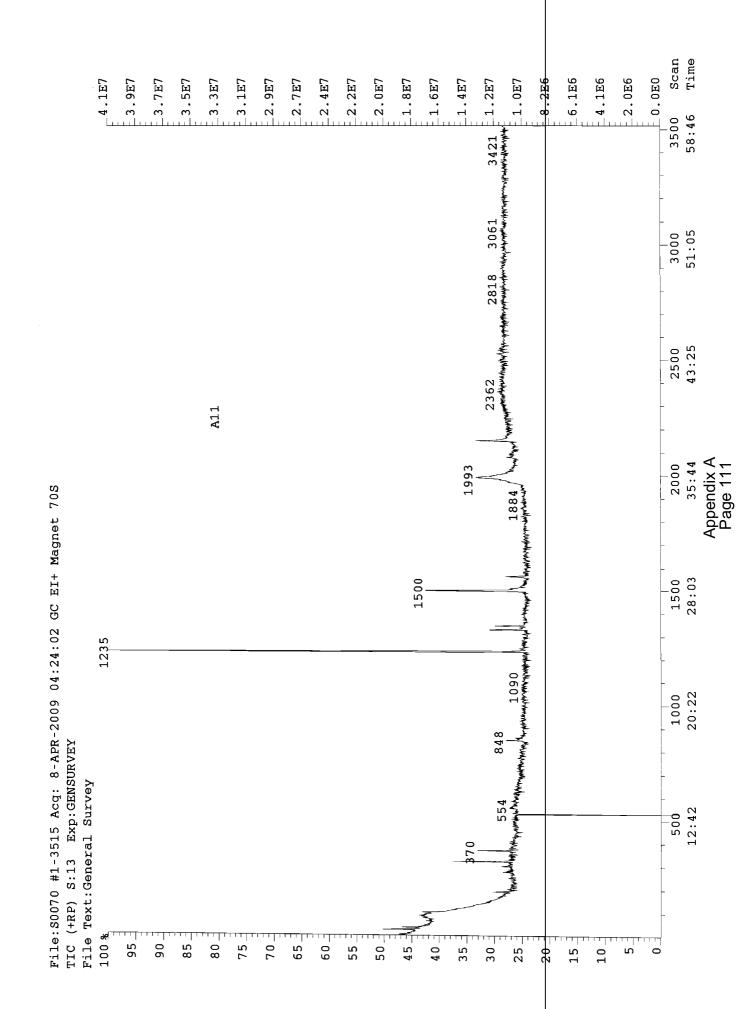
Page: 1 of 1

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/bn)	Standard	Peak
0024	d ₆ -Benzene	Ь	09.0	2.0	I.S.	Internal Standard
0033	Carbon tetrachloride	Ь				Contaminant
0035	2-Chloro-2-methylbutane	⊥	0.35	1.2	Bz	Contaminant
0038	Cyclohexane	Р				Contaminant
0192	Toluene	Ь	0.51	1.7	Bz	Contaminant
0322	d _s -Chlorobenzene	Ь	1.06	2.0	.S.I	Internal Standard
0370	d ₁₀₋ p-Xylene	Ь	0.62	1.0	.S.I	Internal Standard
0557	d ₅ -Phenol	Ь	1.49	8.0	.S.I	Internal Standard
0849	d _s -Naphthalene	Ь	1.28	1.0	'S'I	Internal Standard
1023	Unknown 101, 42, 54, 55	n	2.35	2.2	THB	Test Material
1235	d ₂₀ -BHT	Ь	8.50	8.0	.S:I	Internal Standard
1249	ВНТ	Ь	2.13	2.0	THB	Test Material
1261	1,6-Dioxacyclododecane-7,12-dione	T	1.92	1.8	THB	Test Material
1330	d ₃₄ -Hexadecane	ď	1.7	1.0	.S.I	Internal Standard
1348	Unknown 173, 55, 99, 84	n	1.33	1.3	THB	Contaminant
1440	Unknown 55, 101, 42, 41	n	0.30	0.3	BHT	Test Material
1500	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	4.03	2.0	I.S.	Int. Std. + Contaminant
1509	Tris-(chloropropyl)phosphate isomer		0.14	0.1	BHT	Contaminant
1564	Di-isobutyl phthalate	Ь	1.01	1.0	THB	Contaminant
1754	Unknown 71, 42, 41, 55 [M* 288}	n	16.22	122.4	bS	Test Material
2094	Unknown 42, 71, 41, 55 fM ⁺ 360]	n	31.29	236.2	bS	Test Material
2152	d ₆₂ -Squalane	Р	1.06	8.0	·S:I	Internal Standard
2445	Unknown 42, 41, 71, 72 IM ⁺ 432]	n	45.79	345.6	bS	Test Material
3027	Unknown 42, 71, 41, 72 [M* 504]	Ω	31.46	237.4	Sq	Test Material

Internal standards used: Bz=d6 Benzene, Cl=d5-Chlorobenzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-26-dit-buty4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane **Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.


Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: A. A. Journe

Tests marked §: Not included in the WRC-NSF UKAS Accreditation Schedule.
Tests marked @ Tests not performed by WRC-NSF, approved subcontractor is not UKAS accredited for this test.
Tests marked ∵ Tests not performed by WRC-NSF, approved subcontractor is UKAS accredited for this test.

Authorised By: J. Dunning
J. Dunning
Laboratory Manager

Date: 2/6/09

General Survey GCMS Analysis

Groundwater S0070.13 S0070.11 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 19/03/09 P Jackson WRc-NSF 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

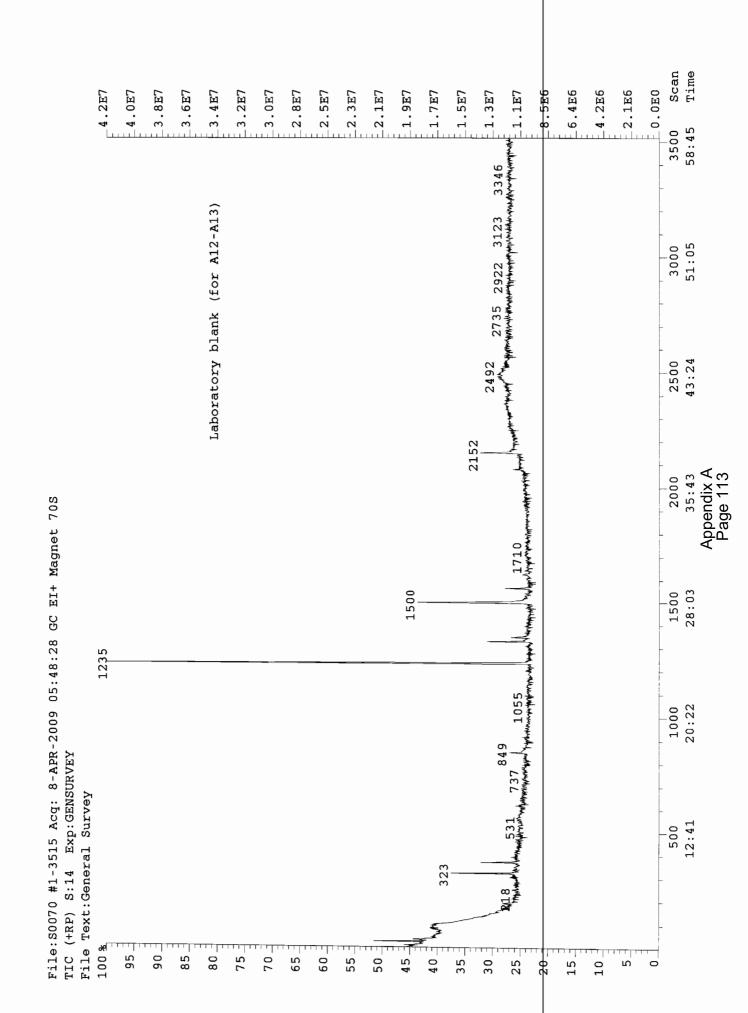
ORG042 19-Mar-09 08-Apr-09 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/bn)	Standard	Peak
0025	d _e -Benzene	d	0.63	5.0	1.S.	Internal Standard
0033	Carbon tetrachloride	ď	76.0	0.0	Bz	Contaminant
0035	2-Chloro-2-methylbutane	L	0.21	6.0	Bz	Contaminant
0192	Toluene	d	0.4	9.0	IJ	Contaminant
0322	d _s -Chlorobenzene	d	1.25	2.0	I.S.	Internal Standard
0370	d ₁₀₋ p-Xylene	d	0.80	1.0	I.S.	Internal Standard
0555	d ₅ -Phenol	d	1.40	8.0	I.S.	Internal Standard
0848	d _s -Naphthalene	d	1.08	1.0	.S.I	Internal Standard
1235	d ₂₀ -BHT	Ы	8.54	8.0	·S·I	Internal Standard
1331	d ₃₄ -Hexadecane	d	0.65	1.0	.S.I	Internal Standard
1347	Unknown 173, 55, 99, 84	n	0.77	2.0	THB	Contaminant
1500	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	1/d	4.52	5.0	.S.I	Int. Std. + Contaminant
1509	Tris-(chloropropyl)phosphate isomer	1	0.11	0.1	THB	Contaminant
1564	Di-isobutyl phthalate	Ь	0.71	2'0	THB	Contaminant
1983	Unknown 42, 71, 41, 72 (carry over?)	n	7.57	50.9	bS	Contaminant
2152	d ₆₂ -Squalane	Ь	2.90	8.0	.S.I	Internal Standard

Internal standards used: B=a65-Barzene, C=d5-Chloroberzene, Xy=d10-P-Xylene, Pa=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6d1-buyl-4-nethylphenol, Hx=d3-Hexadecune. Ph=d10-Phenanthrene and Sq=d82-Squakane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.


Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule. Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRC-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. A. Tauns

J. Dunning Laboratory Manager

Authorised By:

Date: 3/6/09

General Survey GCMS Analysis

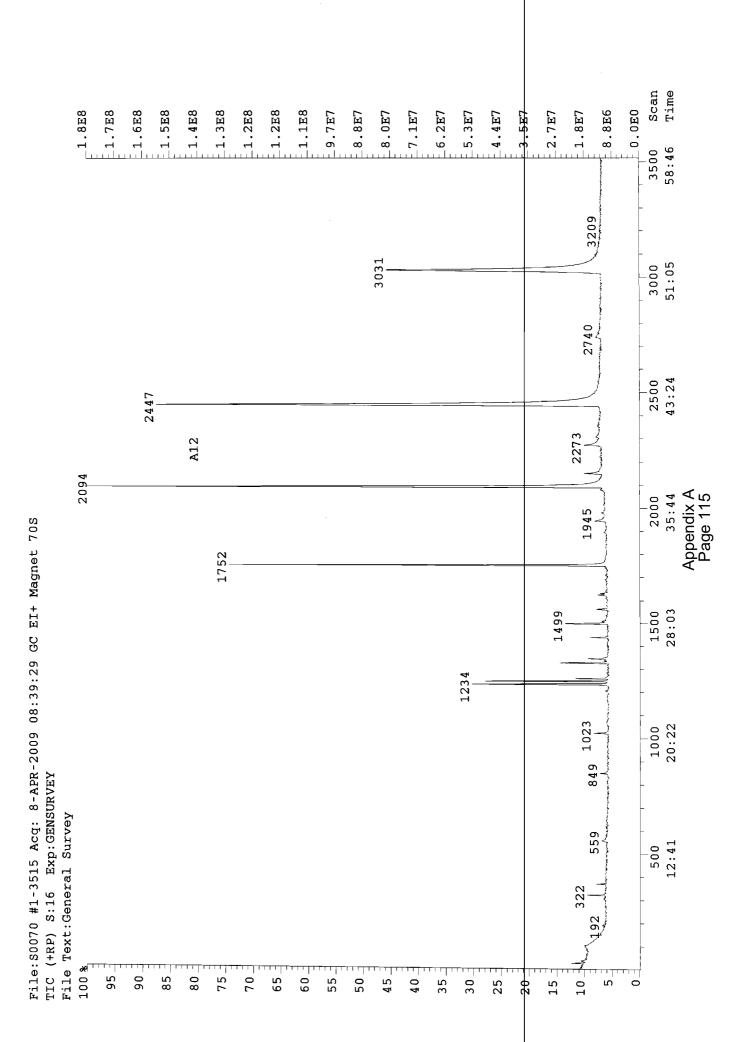
Laboratory blank Bottled water S0070.14 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 24/03/09 P Jackson WRc-NSF N22734 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

24-Mar-09 08-Apr-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(l/bn)	Standard	Peak
0025	d ₆ -Benzene	Ы	0.68	2.0	.S.I	Internal Standard
0034	Carbon tetrachloride	Ь	0.93	2.0	-0	Contaminant
0036	2-Chloro-2-methylbutane	Ь	67.0	5	70	Contaminant
0192	Toluene	Ь	0.19	6.0	I)	Contaminant
0323	d ₅ -Chlorobenzene	Ь	1.39	2.0	.S.I	Internal Standard
0371	d ₁₀₋ p-Xylene	d	0.76	1.0	.S.I	Internal Standard
0555	d ₅ -Phenol	Ь	2.02	8.0	.S.I	Internal Standard
0849	d ₈ -Naphthalene	ď	1.28	1.0	.S.I	Internal Standard
1235	d ₂₀ -BHT	Д	9.76	8.0	.S.I	Internal Standard
1331	d ₃₄ -Hexadecane	4	1.07	1.0	1. <u>S</u> .	Internal Standard
1348	Unknown 173, 55, 99, 84	n	0.70	9.0	THB	Contaminant
1500	d ₁₀ -Phenanthrene + Tris-(chloropropyl) phosphate isomer	Ь/T	4.43	2.0	.S.I	Int. Std. + Contaminant
1509	Tris-(chloropropyl) phosphate isomer	1	0.12	0.1	THB	Contaminant
1564	Di-isobutyl phthalate	Ь	0.68	9.0	BHT	Contaminant
2081	Di-(2-ethylhexyl) phthalate	Ь	0.30	1.4	bS	Contaminant
2152	d ₆₂ -Squalane	Ь	1.75	8.0	.S.I	Internal Standard

internal standards used. BE-06-Benzane, Cled Chlorobenzene, Xy=d10-p-Xylene, Po-05-Phenol, Na=d8-laphthalene, BHT = d20-26-d8-buty-4-methyphenol, Ho-d34-Heuadecane, Ph-010-Phenanthrene and Sq-d62-Squakane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown


Samples were analysed as received unless otherwise stated.

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule. Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Dotails of the WRo-NSF UKAS Accreditation Schedule are available on request. Reported By: A. F. January

J. Dunning Laboratory Manager Authorised By:

Date: 3/6/09

General Survey GCMS Analysis

Sample Code: A12
Sample Type: Groundwater
Data System Code: S0070.16
Associated Blank: S0070.14 Associated Blank: Sample Volume: Samples Received 19/03/09 N22732 14907-0 P Jackson WRc-NSF WRC-NSF Reference: WRC-NSF Contract No: Client Reference: Contact Name: Client:

19-Mar-09 08-Apr-09 1 of 2 **ORG042** Date Analysed: Page : Date Received Method Ref:

1 Litre

Scan	Compaind	Con **	Con I ** Dook Area	Conc	Internal	Origin of
			2017	(l/gn)	Standard	Peak
0025	de-Benzene	d	0.93	2.0	I.S.	Internal Standard
0034	Carbon tetrachloride	d				Contaminant
0036	2-Chloro-2-methylbutane	1	98.0	1.8	Bz	Contaminant
0039	Cyclohexane	ď				Contaminant
0322	d ₅ -Chlorobenzene	d	1.57	2.0	l.S.	Internal Standard
0370	d ₁₀₋ p-Xylene	d	0.92	1.0	I.S.	Internal Standard
0559	d ₅ -Phenol	Ь	2.38	8.0	l.S.	Internal Standard
0849	d ₈ -Naphthalene	d	1.43	1.0	l.S.	Internal Standard
1023	Unknown 101, 42, 54, 55	Ñ	2.20	1.3	BHT	Test Material
1234	d ₂₀ -BHT	d	13.28	8.0	I.S.	Internal Standard
1248	BHT	ď	10.50	6.3	BHT	Test Material
1260	1,6-Dioxacyclododecane-7,12-dione	1	3.16	1.9	BHT	Test Material
1327	Unknown 71, 55, 41, 43	n	79.3	3.4	BHT	Test Material
1329	d ₃₄ -Hexadecane	d	0.0	0.1	I.S.	Internal Standard
1347	Unknown 173, 55, 99, 84	n	2.55	1.5	BHT	Contaminant
1439	Unknown 55, 101, 42, 41	n	1.67	1.0	BHT	Test Material
1499	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	IJd	6.72	2.0	I.S.	Int. Std. + Contaminant
1509	Tris-(chloropropyl)phosphate isomer	L	0.47	0.3	BHT	Contaminant
1563	Di-isobutyl phthalate	d	1.37	8.0	BHT	Contaminant
1624	2-Phenyltridecane	L	0.92	9.0	BHT	Contaminant
1632	Methyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate	L	0.47	0.3	BHT	Test Material
1752	Unknown 71, 42, 55, 41 [M* 288}	n	46.14	88.7	Sq	Test Material
1945	Unknown 42, 41, 71, 43	n	3.04	5.8	Sq	Test Material
2094	Unknown 71, 42, 41, 55 [M* 360]	n	91.44	175.8	bS	Test Material
2151	des-Squalane	۵	4.16	8.0	S.	Internal Standard

Internal standards used; BZ=05-Benzene, CI=65-Chlorobenzene, Xy=d10-p-Xyfene, Po=05-Phenol, Na=08-Naphthalene, BHT = Q20-25-06-bufy4-methyfohenol, Hz=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d52-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

General Survey GCMS Analysis

A12 Groundwater

S0070.16 S0070.14 1 Litre

Sample Code: Sample Type: Data System Code: Associated Blank: Sample Volume: Samples Received 19/03/09 WRc-NSF P Jackson N22732 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

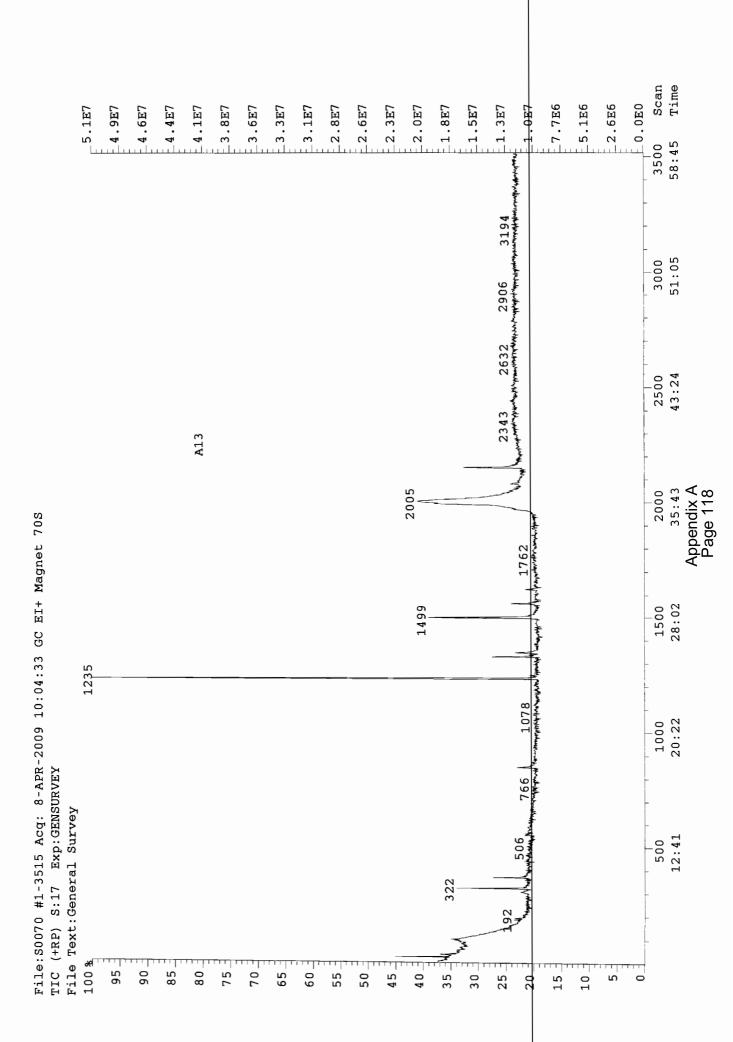
19-Mar-09 08-Apr-09 **ORG042** 2 of 2 Date Received Date Analysed: Page : Method Ref:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc. (ug/l)	Internal Standard	Origin of Peak
2273	Unknown 42, 41, 71, 73	n	69'9	12.9	bS	Test Material
2447	Unknown 42, 41, 71, 72 [M* 432]	n	153.00	294.2	bS	Test Material
3031	Unknown 42, 41, 71, 39 [M* 504]	n	112.10	215.6	bS	Test Material

Internal standards used: Bz=d&Benzene, Cl=dS-Chlorobenzene, Xy=d10-p-Xylene, Po=dS-Phenol, Na=d&Naphthalene, BHT = d20-2,6-dt-buty-d-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d82-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Samples were analysed as received unless otherwise stated.


Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: H. A. Jenne

Date: 9 (6/69 Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Laboratory Manager Authorised By:

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

General Survey GCMS Analysis

Sample Code: Sample Type: Samples Received 19/03/09 P Jackson WRc-NSF N22732 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

Groundwater S0070.17 S0070.14 Data System Code: Associated Blank: Sample Volume:

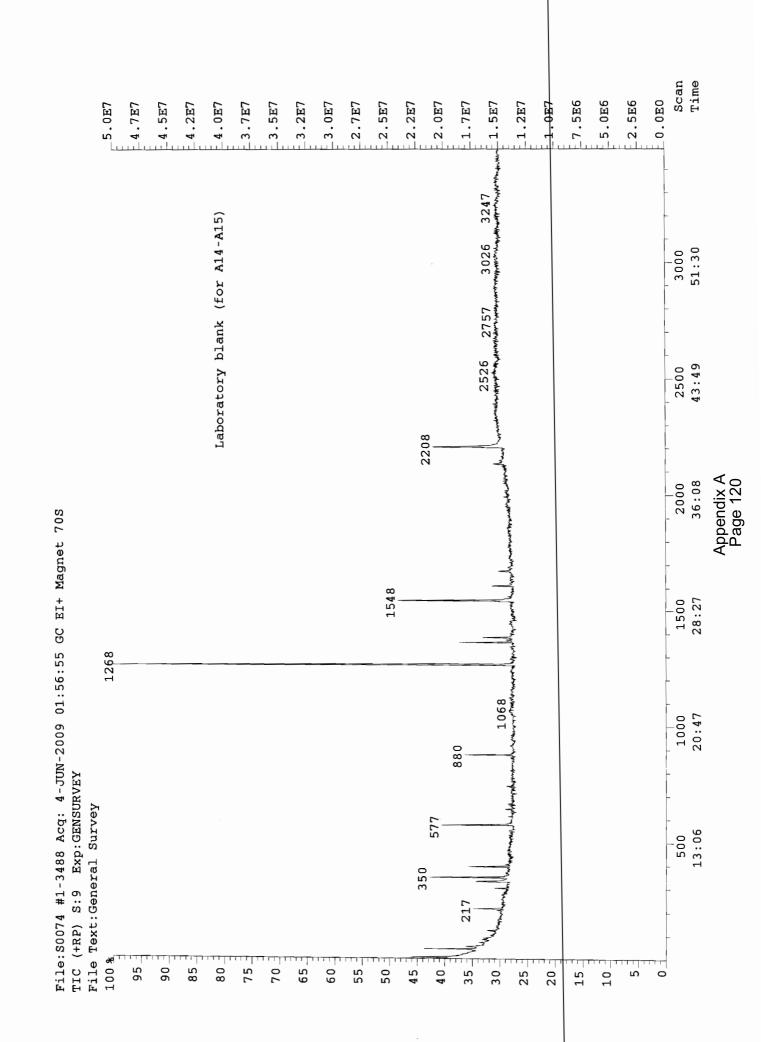
1 Litre

19-Mar-09 08-Apr-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of	
				(l/bn)	Standard	Peak	
0025	d _e -Benzene	Ь	0.83	2.0	I.S.	Internal Standard	
0036	2-Chloro-2-methylbutane	⊥	98.0	6.0	Bz	Contaminant	
0192	Toluene	Ь	0.19	0.2	ō	Contaminant	
0305	Diacetone alcohol	۵	0.41	0.5	ਹ	Contaminant	
0322	d _s -Chlorobenzene	Ь	1.61	2.0	I.S.	Internal Standard	
0370	d ₁₀₋ p-Xylene	Ь	0.89	1.0	I.S.	Internal Standard	
0556	d ₅ -Phenoi	Ь	1.86	8.0	I.S.	Internal Standard	
	d _s -Naphthalene	d	1.34	1.0	I.S.	Internal Standard	
1235	d ₂₀ -BHT	Ь	11.59	8.0	I.S.	Internal Standard	
1249	BHT	Ь	0.26	0.2	BHT	Test Material	
1330	d ₃₄ -Hexadecane	Ь	1.37	1.0	I.S.	Internal Standard	
1338	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	T	0.2	0.1	BHT	Contaminant	
1348	Unknown 173, 55, 99, 84	n	1.29	6.0	BHT	Contaminant	
1499	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	4.33	2.0	I.S.	Int. Std. + Contaminant	
1509	Tris-(chloropropyl)phosphate isomer	Τ	0.11	0.1	BHT	Contaminant	
1563	Di-isobutyl phthalate	Ы	0.71	0.5	THB	Contaminant	
1614	2-Phenyltridecane	T	0.41	0.3	BHT	Contaminant	
2005	Unknown 42, 41, 71, 72 (carry over?)	n	40.78	92.9	bS	Test Material	
2081	D(2-ethylhexyl) phthalate	Ь	89.0	1.5	bS	Contaminant	
2152	d ₆₂ -Squalane	Ь	3.51	8.0	.S.I	Internal Standard	

Internal standards used: Bz=d8-Benzene, Cl=d5-Chiotobenzene, Xy=d10-p-Xydene, Po=d5-Phenot, Na=d8-Napxithalene, BHT = d20-2,6-d8-buy-4-methylphenot, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-SquaBane Con.L. = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.


Reported By: H.A. Janus

Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Laboratory Manager **Authorised By:**

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 9/6/09

General Survey GCMS Analysis

Laboratory blank

Bottled water S0071.5

1 Litre n/a

Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 07/04/09 WRc-NSF P Jackson N22745 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name:

Client:

07-Apr-09 20-Apr-09 **ORG042** 1 of 1 Method Ref: Date Received Date Analysed: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ng/l)	Standard	Peak
0014	d _e -Benzene	Ь	0.51	2.0	l.S.	Internal Standard
0025	2-Chloro-2-methylbutane	Ь	0.14	0.5	Bz	Contaminant
0287	Diacetone alcohol	Ь	0.88	1.3	IJ	Contaminant
3096	d ₅ -Chlorobenzene	Ь	1.32	2.0	l.S.	Internal Standard
0357	d ₁₀₋ p-Xylene	Ь	0.71	1.0	I.S.	Internal Standard
0539	d ₅ -Phenol	Д.	1.16	8.0	I.S.	internal Standard
0825	d _s -Naphthalene	Ь	0.98	1.0	l.S.	Internal Standard
1209	d ₂₀ -BHT	Ь	7.35	8.0	I.S.	Internal Standard
1308	d ₃₄ -Hexadecane	Ь	1.00	1.0	i.S.	Internal Standard
1323	Unknown 173, 55, 99, 84	n	0.39	0.4	BHT	Contaminant
1484	d ₁₀ -Phenanthrene + Tris-(chloropropyl) phosphate isomer	T/d	3.04	2.0	l.S.	Int. Std. + Contaminant
1495	Tris-(chloropropyl) phosphate isomer	Ţ	0.13	0.1	BHT	Contaminant
1553	Di-isobutyl phthalate	Ь	0.46	0.5	BHT	Contaminant
2085	Di-(2-ethylhexyl) phthalate	Ь	0.92	4.5	Sq	Contaminant
2155	d ₆₂ -Squalane	Ь	1.64	8.0	l.S.	Internal Standard

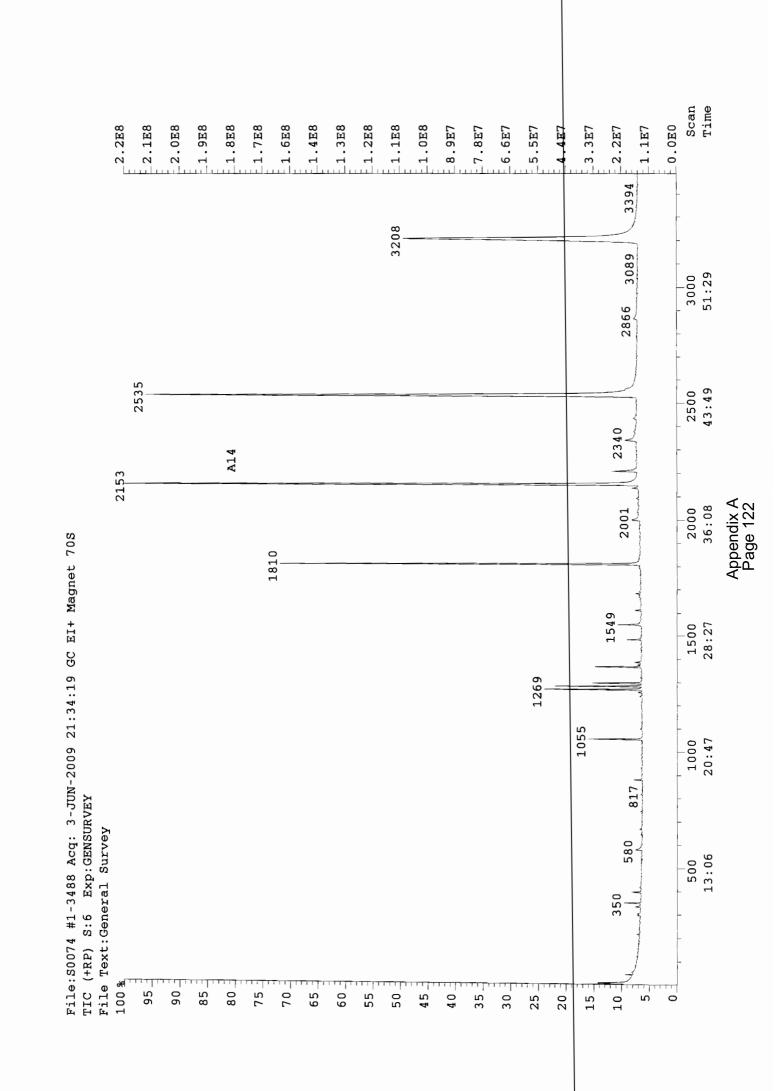
Internal standards used; Bz-a6 Benzene, Cl=d5-Chlorobenzene, Xy=d10-p-Xylene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-dit-buy/4-methylphenol, Hx=d34-Hexadecane Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Samples were analysed as received unless otherwise stated.

Details of the WRc-NSF UKAS Accreditation Schedule are available on request.

Reported By: # # January


Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

J. Dunning **Authorised By:**

Date: 10 (6/09

Laboratory Manager

General Survey GCMS Analysis

 Contact Name:
 P Jackson
 Sample Code:

 Client:
 WRc-NSF
 Sample Type:

 Client Reference:
 Samples Received 07/04/09
 Data System Code:

 WRc-NSF Reference:
 N22745
 Associated Blank:

 WRc-NSF Contract No:
 14907-0
 Sample Volume:

Method Ref: ORG042
Date Received 07-Apr-09
Date Analysed: 03-Jun-09
Page: 1 of 1

A14 Groundwater S0074.6 S0071.5 1 Litre

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
		,		(I/Bn)	Standard	Peak
0004	Tetrahydrofuran	Ь	1.62	6.1	Bz	Test Material
2000	Iso-butanol	Ы	2.06	7.8	Bz	Test Material
0042	d _e -Benzene	Ь	0.53	2.0	I.S.	Internal Standard
0217	Toluene	ď	0.28	0.4	CI	Contaminant
0298	Ethyl-2-hydroxypropanoate	T	0.49	0.7	Ö	Test Material
0303	Butyl acetate	Ь	0.63	6.0	IJ	Contaminant
0333	Diacetone alcohol	Ь	0.84	1.2	ਹ	Contaminant
0350	d ₅ -Chlorobenzene	Ь	1.35	2.0	I.S.	Internal Standard
0397	d _{10.} p-Xylene	Ь	0.83	1.0	l.S.	Internal Standard
0405	Xylene isomer	Ь	0.19	0.3	C	Test Material
0280	d _s -Phenol	Ь	2.07	8.0	l.S.	internal Standard
8990	2-Ethylhexanol	Ь	0.25	9.4	CI	Test Material
0743	2-Butoxyethylacetate	1	0.15	0.2	CI	Test Material
0817	4-Butoxybutanol	T	0.31	0.5	C	Test Material
0880	d ₈ -Naphthalene	Ь	1.12	1.0	1.S.	Internal Standard
1055	Unknown 101, 42, 54, 55	n	00.9	4.2	BHT	Test Material
1204	Unknown 42, 41, 55, 71	n	0.25	0.2	BHT	Test Material
1240	2,6-Di-t-butyl-4-hydroxy-4-methyl-2,5-cyclohexadien-1-one	Τ	0.40	0.3	BHT	Test Material
1257	Unknown 45, 115, 58, 55	n	0.44	0.3	BHT	Test Material
1269	d ₂₀ -BHT	Р	11.34	8.0	I.S.	Internal Standard
1283	BHT	Ъ	9.10	6.4	BHT	Test Material
1297	1,6-Dioxacyclododecane-7,12-dione	⊥	6.12	4.3	BHT	Test Material
1366	Unknown 71, 55, 73, 41 + d ₃₄ -Hexadecane	U/P	5.93	4.2	BHT	Test Material + Int.Std.
1375	Unknown 71, 43, 41, 57	n	0.40	0.3	BHT	Test Material
1386	Unknown 173, 55, 99, 84	n	0.61	0.4	BHT	Contaminant
1484	Unknown 55, 101, 42, 41	n	1.63	1.1	BHT	Test Material
1544	Tris-(chloropropyl)phosphate isomer	⊥	0.16	0.1	BHT	Contaminant
1549	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	Ρ/T	4.45	2.0	l.S.	Int. Std. + Contaminant

Internal standards used; Bardane, Cl=d5-Chlorobenzene, Xyrd10-P-Xylene, Po=d5-Phenol, Nazd8-Naphthalene, BHT = d20-2,6-df-buy/4-methylphenol, Hz=d3-4-texadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

General Survey GCMS Analysis

Samples Received 07/04/09 WRc-NSF P Jackson N22745 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

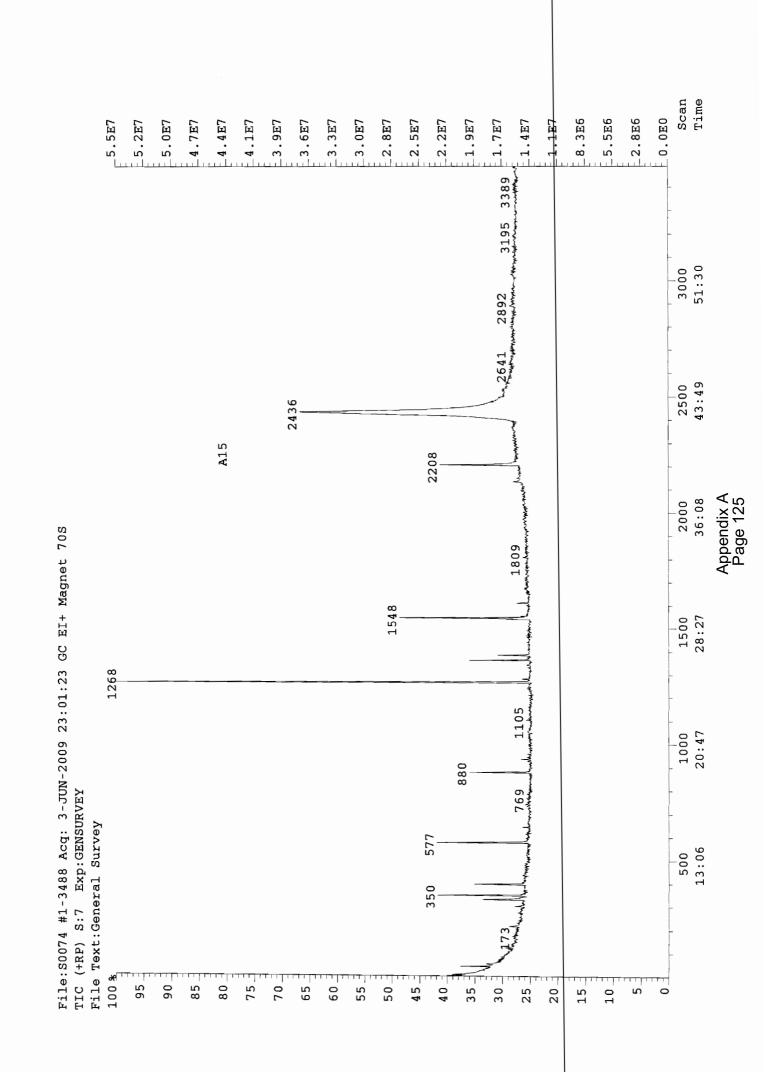
Groundwater S0074.6 S0071.5 1 Litre Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type:

07-Apr-09 03-Jun-09 1 of 1 **ORG042** Date Received Date Analysed: Method Ref: Page:

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(ug/l)	Standard	Peak
1556	Tris-(chloropropyl)phosphate isomer	1	0.08	0.1	BHT	Contaminant
1612	Di-isobutyl phthalate	Ь	69.0	0.5	BHT	Contaminant
1810	Unknown 71, 42, 55, 41 [M ⁺ 288}	n	51.93	70.1	Sq	Test Material
1945	Unknown 42, 41, 71, 43	n	3.04	4.1	Sq	Test Material
2153	Unknown 71, 55, 73, 42 IM ⁺ 360]	Ŋ	94.78	127.9	Sq	Test Material
2209	d ₆₂ -Squalane	Д.	5.93	8.0	I.S.	Internal Standard
2340	Unknown 42, 73, 71, 41	n	4.59	6.2	Sq	Test Material
2535	Unknown 71, 42, 55, 73 fM ⁺ 432l	n	168.90	227.9	Sq	Test Material
3208	Unknown 71, 42, 55, 73 IM* 504I	n	143.30	193.3	Sq	Test Material

Internal standards used; Bz=d6-Benzene, Cled-Chlorobenzene, Xy=d10-p-Xytene; Po=d5-Phenol; Na=d8-Naphthalene, BHT = d20-2; G4t-bub/4-methyphenol; Hx=d34-Hexadecane. Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown


Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: F. F. Januar

Date: 10/6/09 Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning Laboratory Manager **Authorised By:**

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test.

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

General Survey GCMS Analysis

Groundwater Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 07/04/09 P Jackson WRc-NSF N22745 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

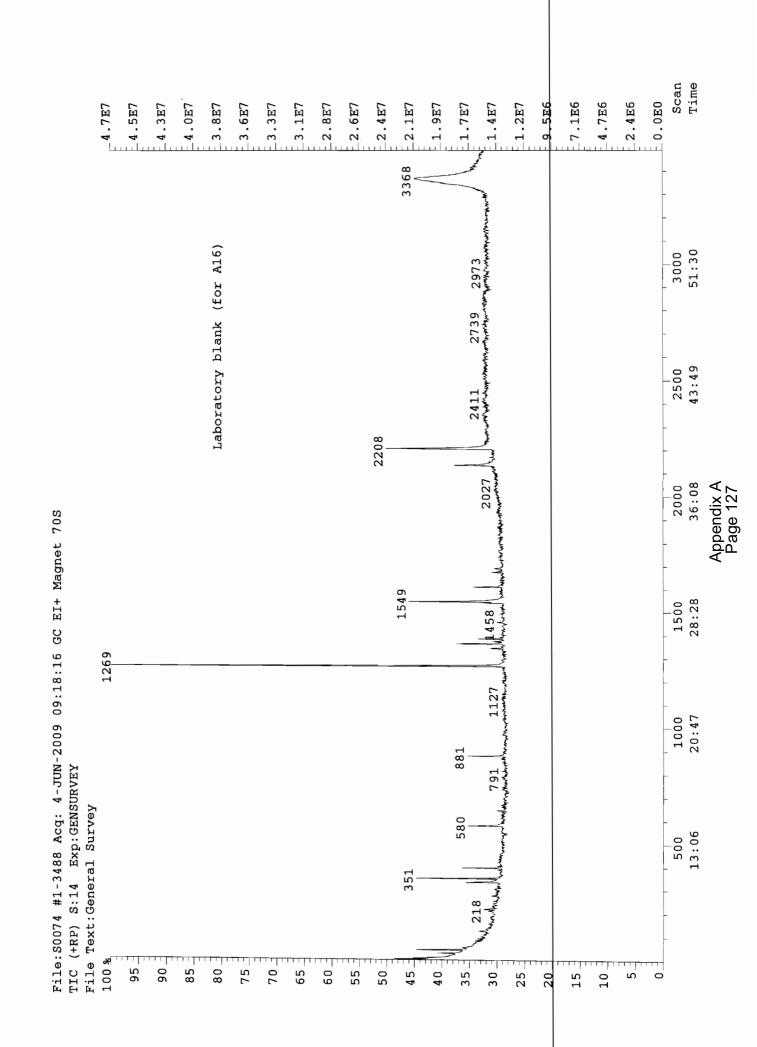
07-Apr-09 03-Jun-09 **ORG042** 1 of 1 Date Analysed: Date Received Method Ref: Page:

> S0074.7 S0071.5 1 Litre

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of	
				(l/bn)	Standard	Peak	
0003	Acetone	Ь	0.31	1.0	Bz	Contaminant	
2000	Tetrahydrofuran	Ь	74.0	1.5	Bz	Contaminant	
0043	d ₆ -Benzene	d	79'0	2.0	I.S.	Internal Standard	
0052	Carbon tetrachloride	d	02.0	90	B-	Contaminant	
0055	2-Chloro-2-methylbutane	Ţ	0.50	9	70	Contaminant	
0217	Toluene	Ь	0.3	0.3	IJ	Contaminant	
0304	Butyl acetate	d	0.26	0.3	IJ	Contaminant	
0332	Diacetone alcohol	d	1.61	1.8	IO	Contaminant	
0350	d _s -Chlorobenzene	Ь	1.81	2.0	LS.	Internal Standard	
0397	d ₁₀₋ p-Xylene	Ь	1.19	1.0	LS.	Internal Standard	
0577	d ₅ -Phenol	d	2.73	8.0	.S.I	Internal Standard	
0645	n-Decane	Ь	0.18	0.2	CI	Contaminant	
0880	d ₈ -Naphthalene	Ь	1.49	1.0	I.S.	Internal Standard	
1268	d ₂₀ -BHT	Ь	11.55	8.0	I.S.	Internal Standard	
1282	BHT	Ь	0.19	0.1	BHT	Test Material	
1364	d ₃₄ -Hexadecane	Ь	1.53	1.0	I.S.	Internal Standard	
1385	Unknown 173, 55, 99, 84	n	0.88	9.0	BHT	Contaminant	
1548	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	4.53	2.0	I.S.	Int. Std. + Contaminant	
1555	Tris-(chloropropyl)phosphate isomer	T	0.16	0.1	BHT	Contaminant	
1611	Di-isobutyl phthalate	Р	0.33	0.2	BHT	Contaminant	
2135	D(2-ethylhexyl) phthalate	d.	0.25	0.5	Sq	Contaminant	
2208	d ₆₂ -Squalane	Ь	4.34	8.0	I.S.	Internal Standard	
2436	Unknown 42, 71, 41, 72 [M+ 576] (carry over from A14)	n	66.61	122.8	Sq	Test Material	

Internal standards used: Bz=86-Benzene, CledS-Chlorobenzene, Xy=d10-p-Xylene, Po=86-Phenol, Na=84Naphthalene, BHT = d20-2,6-dt-buty4-metryfphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=662-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown


Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: J. A. Tource

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. J. Dunning J. Dunning Laboratory Manager Authorised By:

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 10/6/09

General Survey GCMS Analysis

Laboratory blank Bottled water S0074.14 1 Litre n/a Data System Code: Associated Blank: Sample Volume: Sample Code: Sample Type: Samples Received 05/05/09 P Jackson WRc-NSF N22758 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

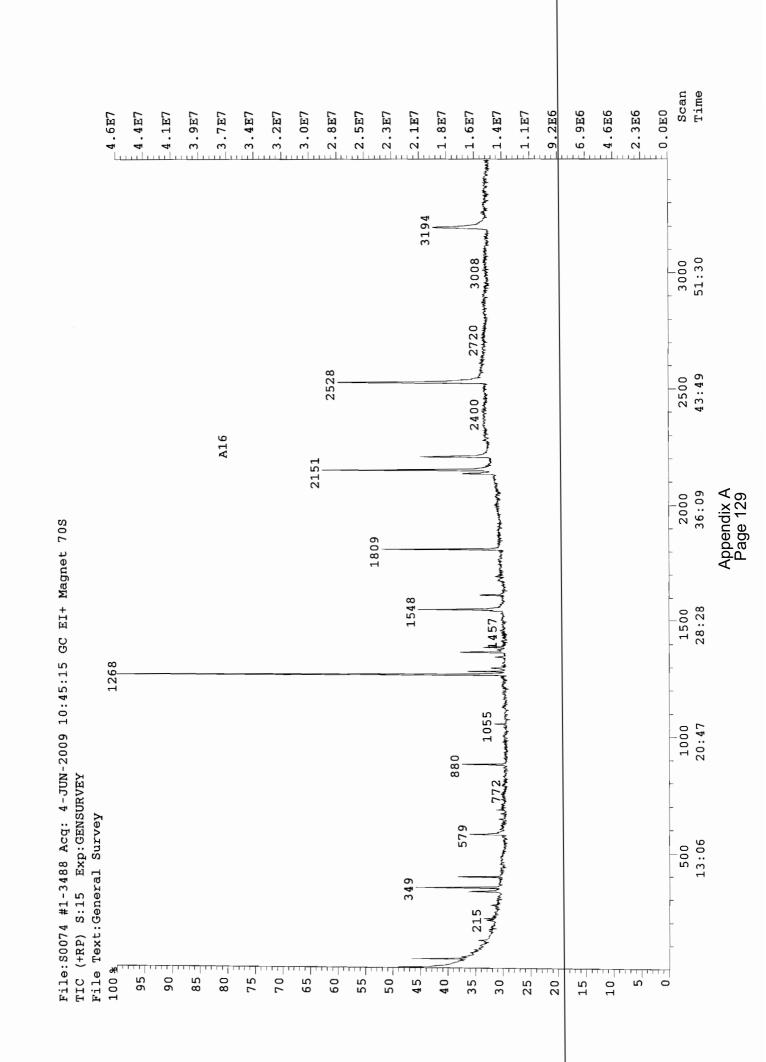
05-May-09 04-Jun-09 1 of 1 **ORG042** Date Received Date Analysed: Method Ref: Page:

																		nant							
Peak	Contaminant	Contaminant	Contaminant	Internal Standard	Contaminant	Contaminant	Contaminant	Internal Standard	Internal Standard	Internal Standard	Contaminant	internal Standard	Internal Standard	Contaminant	internal Standard	Contaminant	Contaminant	Int. Std. + Contaminan	Contaminant	Contaminant	Contaminant	Contaminant	Contaminant	Internal Standard	Contaminant
Standard	Bz	Bz	Bz	I.S.	Bz	IJ	l)	.S.I	I.S.	I.S.	CI	1.S.	.S.I	BHT	LS.	THB	BHT	I.S.	BHT	BHT	BHT	BHT	Sq	I.S.	bg
(ug/l)	1.0	8.0	8.0	2.0	0.5	0.4	1.4	2.0	1.0	8.0	0.3	1.0	8.0	0.2	6.0	0.2	0.5	2.0	0.1	0.7	0.3	0.2	2.7	8.0	48.1
COII.L Fear Area	0.42	0.33	0.34	0.88	0.23	0.36	1.22	1.72	1.04	1.36	0.22	1.21	9.99	0.29	1.17	0.23	0.61	4.00	0.15	0.87	0.38	0.25	1.83	5.37	32.29
C011.L	Ь	d		d	Ь	ď	ď	Ь	Ь	۵.	Ь	Ы	d	Ь	Ь	1	n	Ь/T	T	д	T	Ь	Ь	Ы	3
plinodillo	Acetone	Tetrahydrofuran	2-Methyl-1,3-dioxolane	d ₆ -Benzene	n-Heptane	Toluene	Diacetone alcohol	d _s -Chlorobenzene	d ₁₀₋ p-Xylene	d _s -Phenol	n-Decane	d ₈ -Naphthalene	d ₂₀ -BHT	Diethyl phthalate	d ₃₄ -Hexadecane	2,4,4-Trimethylpentane-1,3-diol di-isobutyrate	Unknown 173, 55, 99, 84	d ₁₀ -Phenanthrene + Tris-(chloropropyl) phosphate isomer	Tris-(chloropropyl) phosphate isomer	Di-isobutyl phthalate	2-Phenyltridecane	D-n-butyl phthalate	Di-(2-ethylhexyl) phthalate	d ₆₂ -Squalane	Unknown 42, 71, 41, 72 (carry over)
ocall	0003	2000	0028	0043	0125	0218	0333	0351	0398	0280	0645	0881	1269	1344	1365	1375	1386	1549		1612	1676	1692	2136	2208	3368

Internal standards used. B2-d6-Berzene, CladS-Chiorobenzene, Xy-d10-p-Xylene, Po-d5-Phenol, Na-d8-Naphthalene, BMT = d20-26-d8-butyl-4-nethyphenol, thr-d34-Hexadecane, Phed10-Phenathinene and Sqra82-Squalene

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.


Reported By: 4. A. Journ

Tests marked @: Tests not performed by WRc-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. Jehr Diming Authorised By:

Laboratory Manager

Tests marked \$: Not included in the WRc-NSF UKAS Accreditation Schedule.

Date: 15/6/09

General Survey GCMS Analysis

Sample Code: Sample Type: Data System Code: Associated Blank: Sample Volume: Samples Received 05/05/09 P Jackson WRc-NSF N22758 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

ORG042 05-May-09 04-Jun-09 1 of 2 Method Ref: Date Received Date Analysed: Page:

A16 Groundwater S0074.15 S0074.14 1 Litre

Scan	Compound	Con.L**	Con.L** Peak Area	Conc.	Internal	Origin of
				(I/bn)	Standard	Peak
0004	Tetrahydrofuran	d	0.47	1.1	Bz	Test Material
0042	d ₆ -Benzene	Ь	0.89	2.0	1.S.	Internal Standard
0122	n-Heptane	۵	0.24	0.5	Bz	Contaminant
0215	Toluene	۵	0.26	0.3	ਠ	Contaminant
0331	Diacetone alcohol	۵	1.06	1.3	ರ	Contaminant
0349	d ₅ -Chlorobenzene	۵	1.63	2.0	l.S.	Internal Standard
0396	d ₁₀₋ p-Xylene	Ъ	0.90	1.0	.S.I	Internal Standard
0579	d _S -Phenol	۵	1.77	8.0	I.S.	Internal Standard
0880	d ₈ -Naphthalene	۵	1.03	1.0	I.S.	Internal Standard
1055	Unknown 101, 42, 54, 55	n	0.41	0.3	THB	Test Material
1268	d₂₀-BHT	Ь	9.92	8.0	S'I	Internal Standard
1282	BHT	Ь	0.85	0.7	THB	Test Material
1297	1,6-Dioxacyclododecane-7,12-dione	⊥	0.28	0.2	BHT	Test Material
1344	Diethyl phthalate	۵	0.18	0.1	BHT	Test Material
1365	d ₃₄ -Hexadecane	Ь	1.16	6.0	THB	Internal Standard
1375	Unknown 71, 43, 41, 57	n	0.16	0.1	THB	Test Material
1386	Unknown 173, 55, 99, 84	n	0.58	0.5	THB	Contaminant
1548	d ₁₀ -Phenanthrene + Tris-(chloropropyl)phosphate isomer	P/T	3.54	2.0	1.S.	Int. Std. + Contaminant
1555	Tris-(chloropropyl)phosphate isomer	1	0.10	0.1	THB	Contaminant
1612	Di-isobutyl phthalate	Ь	0.71	9.0	THB	Contaminant
1809	Unknown 71, 42, 55, 41 [M* 288]	n	3.39	8.0	bS	Test Material
2135	Di-(2-ethylhexyl) phthalate	Ь	1.24	5.9	bS	Test Material
2151	11phpown 71 42 73 55 [M* 360]	=	6.23	14.7	DS:	Test Material

Internal standards used: Brads-Chlorobenzane, Clads-Chlorobenzane, Xyad10-p-Xylene, Poads-Phenol, Naads-Naphthalene, BHT = d20-2,6-dit-butyl-4-metrylphenol; Hx-d34-Hexadecane, Ph-a10-Phenanthrene and Sazinf2-Sq. Internal standards used: Brad10-Phenanthrene and Sazinf2-Sq.

"Con.L - Confidence level of identification: P=Positive, T=Tentative and U=Unknown

General Survey GCMS Analysis

A16 Sample Code: Samples Received 05/05/09 P Jackson WRc-NSF N22758 14907-0 WRc-NSF Contract No: WRc-NSF Reference: Client Reference: Contact Name: Client:

	S0074.14 Page:	S0074.15 Date Analysed:	Groundwater Date Received	A16 Method Ref:	ORG042 05-May-09 04-Jun-09 2 of 2	Method Ref: Date Received Date Analysed: Page:	4000+	Sample Code: Sample Type: Data System Code: Associated Blank: Sample Volume:
--	----------------	-------------------------	---------------------------	-----------------	--	---	-------	--

Scan	Compound	Con.L**	Con.L** Peak Area	Conc. (ua/l)	Internal Standard	Origin of Peak	
2208	d ₆₂ -Squalane	Ь	3.40	8.0	l.S.	Internal Standard	
2528	Unknown 71, 42, 41, 55 [M* 432]	Ŋ	8.96	21.1	Sq	Test Material	
3194	Unknown 42, 71, 41, 72 IM ⁺ 504]	n	6.18	14.5	Sq	Test Material	

nternal standards used. Bz-di6-Benzene, Cl=di5-Chlorobenzene, Xy=d10-p-Xytene, Po=d5-Phenol, Na=d8-Naphthalene, BHT = d20-2,6-dit-bub/4-methylphenol, Hx=d34-Hexadecane, Ph=d10-Phenanthrene and Sq=d62-Squalane

**Con.L = Confidence level of identification: P=Positive, T=Tentative and U=Unknown

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of the WRc-NSF UKAS Accreditation Schedule are available on request. Samples were analysed as received unless otherwise stated.

Reported By: A. A. January

Date: 16 (6/09 Tests marked \$: Not included in the WRC-NSF UKAS Accreditation Schedule.
Tests marked @: Tests not performed by WRC-NSF, approved subcontractor is not UKAS accredited for this test. Tests marked *: Tests not performed by WRc-NSF, approved subcontractor is UKAS accredited for this test. The Dunic J. Dunning Laboratory Manager Authorised By: